EFFECT OF POLLUTED WATER OF ULHAS RIVER ON THE INORGANIC CONTENT OF ITS VEGETATION-II

Schola & Andry Stuffer

S.A. SALGARE and K.B. ANDHYARUJINA

Department of Botany, Institute of Science, Bombay 400 032, India.

The inhibition was observed in the inorganic contents like sodium, potassium, lithium, calcium, magnesium, iron and phosphorous of the selected eight species. However, there was increase in chloride content of the plant species affected by industrially polluted water of Ulhas River.

testand interview upstrate Transport - reconstruction where calculated

Keywords : Inorganic content; Polluted Water; Vegetation.

AND SOW IT WORK AND A

Introduction

Pollution hazard as a result of increased industrialization is by now a well known fact. The contamination of waterbody takes place due to the discharge of effluents from industries. The various industrial plants situated near Kalyan, a suburb of Bombay, discharge their effluents into the Ulhas river. Denudation of vegetation in heavy metal contaminated area is related to the toxicity of metals. At high levels of pollution, total elimination sensitive community takes place (Thompson, 1928). The metals are found to be interfering with the normal functioning of plant body as a result of which loss in production leading to death may take plece. The adverse effects of pollution on vegetation are found to be morphological, physiological,

biochemical and may cause genetic anomalies.

the President of the volume is the de to

03

Materials and Methods

Ash solutions were prepared from dried materials of Blumea lacera D.C., Tridex procumbens L, Xanthium strumarium L, Leucas aspera Spreng., Ocimum americanum L. Syn., Pogostemon parviflorous Bentu., Polygonum glabrum Willd. and Euphorbia heterophylla L. and analysed for inorganic content.

An accurately weighed 2 g of oven dried plant material was heated in crucible at 550°C in a muffle furnace to a constant weight. The ash was moistened with a known amount of concentrate HNO₃ and evaporated to dryness. The residue was moistened with 5 ml of 3N HCl and boiled for 2 minutes. The contents of the crucible were transferred to a beaker with 50 ml hot glass distilled water, heated on water bath for a few minutes and filtered into 100 ml volume-tric flask and the volume is made to the mark (Scott, 1939).

SODIUM, POTASSIUM, LITHIUM— These elements were determined quantitatively from ash solution by using Flame Photometric Method on Elico Flame Photometer (Crosby, 1977).

CALCIUM AND MAGNESIUM— They were determined E.D.T.A. titration method (Vogel, 1978).

TOTAL CALCIUM AND MAGNE-SIUM—To an aliquot of the ash solution added 5 ml of buffer (pH 10), about 30 mg each of Potassium cyanide and hydroxylamine hydrochloride. About 0.2 g of Erichrome Black T indicator was added and titrated against 0.01M E.D.T.A. solution using microburette. The end point was pure blue.

CALCIUM—To an another aliquot, 4 ml of 8M KOH and about 30 mg each of Potassium cyanide and hydraxylamine hydrochloride were added. 0.2 g of Patton and Reeder's indicator was added and titrated against E.D.T.A. Calcium is calculated from the readings.

MAGNESIUM—The content of Magnesium was found out by the difference of above two readings of i) total reading of Calcium and Magnesium and ii) reading of Calcium alone.

IRON—The content were estimated by Farrar's thiocyanate method (Farrar, 1935). To 1 ml of aliquot, 1 ml of glass distelled water (D.W). and 5 ml of 3N Potassium thiocynate were added. 2-3 drops of concentrated Nitric acid were added before added KSCN. It was read on a photolectric colorimeter with 540 μ . Standard iron readings were taken by taking standard iron solution in place of aliquot.

PHOSPHOROUS-Sterges and Hardin (1960) modified method of Bell and Diosy's (1920) hydroquinone method which was utilised for phosphorous estimation. To 1 ml of aliquot, 6 ml of glass D.W., 1 ml of Ammonium molybdate (5%) and 1 ml of Sodium Sulphite (20%) were added. To this 1 ml of freshly prepared hydroquinone (0.25%) solution was added. The total contents in the test tube was 10 ml. It was read on spectrophotometer at 640 µm, after 30 minutes. Standard readings were similarly taken by replacing standard phospate solution in place of the aliquot.

CHLORIDES—It was estimated by Volhard's method from Vogel's Text Book of Inorganic Analysis (1939). To 10 ml of 0.1N Silver nitrate few Table 1. Effect of Polluted water of Ulhas River on the Mineral Content of Its Vegetation

(Values given are mean ± SE of 10)

14.62 18.00 30.00 21.42 22.44 15.38 32.50 32.51 DFC Calcium 2.20 ± 0.70 5.60 ± 0.50 5.62±0.14 4.40 ± 0.60 4.80 ± 0.70 3.20±0.60 5.20 ± 0.08 4.60 ± 0.12 0 17.24 34.69 60.6 20.56 3.33 25.00 15.45 6.81 % DFC Lithium 1.40±0.14 1.90 ± 0.32 3.30 ± 0.28 4.00 ± 0.08 3.60±0.18 2.10 ± 0.50 1.20 ± 0.80 1.50 ± 0.32 2 Minerals in mg/100 g dry weight 11.66 27.15 20.15 28.40 % DFC 12.93 13.17 17.38 10.80 Potassium 3.50±0.70 4.40 ± 0.60 1.70 ± 0.28 2.60 ± 0.02 3.00 ± 0.18 4.40 ± 0.12 5.40 ± 0.15 2.30±0.70 0 29.64 14.81 15.83 4.90 4.80 3.27 16.83 23.29 % DFC Sodium 4.20 ± 0.22 3.82 ± 0.18 2.70 ± 0.60 4.25 ± 0.32 2.90 ± 0.15 2.70±0.50 2.82 ± 0.09 2.24 ± 0.90 0 0. americanum E. heterophylla T. procumbens X. strumarium P. parviflorous Species L. aspera P. glabrum B. lacera

J. Phytol. Res. 3 (182)

DFC, difference from control; P, in samples from polluted area; -, inhibition.

41

C	
-	
_	
0	
-	
10	
-	
O	
-	
0,	
(D)	
-	
>	
10	
~	
-	
-	
-	
0	
1	
-	
-	
-	
Ð	
-	
-	
0	
O	
-	
1000	
-	
0	
-	
(1)	
-	
C	
-	
-	
>	
<	
a	
-	
2	
-	
-	
5	
0	
0	
-	
Ð	
5	
-	
m	
Lie	
S	
-	
-	
-	
-	
-	
0	
0	
-	
P	
ter	
ter	
ater	
Vater	
Nater	
Water	
Water	
d Water	
ed Water	
ed Water	
ted Water	
uted Water	
uted Water	
lluted Water	
Illuted Water	
olluted Water	
olluted Water	
Polluted Water	
Polluted Water	
f Polluted Water	
of Polluted Water	
of Polluted Water	
t of Polluted Water	
t of Polluted Water	
ct of Polluted Water	
ect of Polluted Water	
ect of Polluted Water	
fect of Polluted Water	
ffect of Polluted Water	
Effect of Polluted Water	
Effect of Polluted Water	
. Effect of Polluted Water	
2. Effect of Polluted Water	
2. Effect of Polluted Water	
2. Effect of Polluted Water	
9 2. Effect of Polluted Water	
e 2. Effect of Polluted Water	
le 2. Effect of Polluted Water	
ble 2. Effect of Polluted Water	
ble 2. Effect of Polluted Water	
able 2. Effect of Polluted Water	
Fable 2. Effect of Polluted Water	
Table 2. Effect of Polluted Water	

(Values given are mean ± of 10)

				Min	erals in mç	1/100 g dry we	eight	
Species		Iron	101 10	Phose	horous	Magn	esium	Chloride
anand a	La Maria		% DFC	C I I	% DFC	TOP. Id ON 8	% DFC	81 P. 50 T % DFC 18 00
B. lacera		26.15 ±0.15	12.52	51.50±0.5 0	20.03	0.24±0.05	12.80	640.00±0.30 300.00
T. procumbe	sua	29.85±0.05	14.95	21.45±0.26	72.88	0.10±0.12	31.60	1280.00±0.14 300.00
X. strumariu	m	8.30±0.12	66.80	42.65±0.18	55.57	0.38±0.18	20.80	800.00±0.07 400.00
L. aspera		7.45±0.18	86.34	40.00±0.06	61.65	0.20±0.05	18.30	2080.00±0.18 550.00
O. american	um	6.25 ± 0.23	57.38	17.15±0.08	28.39	0.28±0.17	22.20	0.160.00±0.21 100.00 0
P. parvifloro	Sne	23.30±0.18	30.03	42.65±0.12	57.77	0.26±0.12	27.70	480.00±0.16 200.00
P. glabrum		0.00±0.06	45.35	32.00±0.24	45.29	0.45 ± 0.21	15.12	800.00±0.19 150.00
E. heterophy	vila 1	1.55±0.32	24.51	20.85±0.16	31.97	0 48 ± 0.32	19.34	480.00±0.15 200.00 +
				A STATE STAT	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	and the second second		and the second sec

DFC, difference from control; P, in samples from polluted area; -, inhibition; +, stimulation.

1

Saigare and Andhyarujina

42

drops of 6M Nitric acid were added. About 1 ml of Iron alum indicator was added and titrated against 0.1N Potassium thiocvanate. The end point shows brick red colour. This gives the blank reading. Similarly, take another reading by adding 5 ml of aliquot to AgNO₃, HNO₃ and Fealum indicator and titrating against 0.1N KSCN. The chloride content is calculated from the difference between the two readings. To find out the chloride contents in the plant material, ash solution was prepared as described earlier but Nitric acid was used in place of hydrochloric acid.

Results and Discussion

Except the increase in chloride content, the other mineral contents such as sodium, potassium, lithium, calcium, iron, phosphorous and magnesium of all the species were reduced by the polluted water of Ulhas river (Table 1, 2)

Maximum 29.64% and minimum 3.27% inhibition was seen in sodium content in Euphorbia heterophylla and Ocimum americanum respectively. Maximum of 28.40% and minimum of 12.93% inhibition caused in potassium content in E. heterophylla and Tridax procumbens respectively. As high as 34.69% and as low as 3.33% inhibition was caused in lithium content in T. procumbens and Xanthium strumarium respectively, Maximum

32.51% and minimum of 14.62% inhibition was caused by water pollution in Leucas aspera and Ocimum americanum respectively. Maximum 86.34% and minimum 12.52% inhibition was caused in iron content in L. aspera and Blumea lecera respectively. As high as 72.88% and as low as 20.03% inhibition was recorded in phosphorous content in T. procumbens and B lacera respectively. As high as 31.60% and as low as 12.80% inhibition was noticed in magnesium content in T. procumbens and B. lacera respectively. However, there was stimulation as high as 550.00% and as low as 100.00% in chloride content in L. aspera and O. americanum respectively.

Estuarine region of Ulhas river is depleted of nutrients and as a consequence the floristic diversity of the bank vegetation is adversely affected (Aswani Kumar, 1983). Due to lacking and reduction of nutrients there was stunted growth in vegetation, reduction in growth performances, physiological aspects and biochemical changes in plants which lead to their reduction in organic matter production (Shetye, 1982). Oertzen and Finlayson (1984) obser-ved decrease in, K, N and P contents of plant tissues whereas Na and Clcontents increased in waste water acquatic plants.

According to Mohanty and Reddy (1982), Ca and Mg antagonize each other in their absorption by plants. Liming of acid soils increases the soil pH and supplies Ca. Heavy dressings of lime leads to Mg deficiency, in highly leached humus acid soils or on sandy soils as Mg uptake is depressed as a result of Ca-competition. Similarly heavy absorption of Mg may result in Ca-deficiency. Increase in Ca-supply of Mg enhanced their susceptibility. Mineral contents of *Vigna mungo* were not stimulated by 2, 4-D (Theresa Sebastian, 1987).

The mineral content of all the species is inhibited by the polluted water of Ulhas river. As a result of adverse effects of industrial effluents in the river the mineral nutrient content in the habitat is badly affected and the plants have reduced amount of it in their tissues.

Due to industrial effluents the pH of medium shows values above 7 as well as the region of investigation is estuarine in nature. As a result the content of the plant tissue is affected showing increase in chloride content. Thes, the plant species of Ulhas river area show stimulation in chloride content.

Accepted July, 1990.

References

Aswanikumar A V 1983, Ph.D. Thesis. Univ. Bombay, Bombay.

Crosby N T 1977, The Analsyt. 102 225

Farrar G E 1935, J. Biol. Chem 110 685

Mohanty S K and Reddy P 1982, Curr. Sci. 51 298

Oertzen V and Finlayson, M 1984, Environ. Pollut. A 35 259

Scott W W 1939, Standard Methods of Chemical Analysis D, Van Nostrand and Co. New York.

Shetye R P 1982, Ph. D. Thesis, Univ. Bombay, Bombay.

Sterges A J and Hardin L J 1950, J. Asso. Offi. Agri. Chem. 33 114

Theresa Sebastian 1987, Ph. D. Thesis, Univ. Bombay.

Thompson D H 1928, Nat, Hist. Surv. Bull. 17 285

Vogel's Text Book of Quantitative Inorganic Analysis including Elementary Instrumental Analysis (4th Ed.) Revised by Bassett, J., Denney, R.C., Jeffrey, G.H., and Mendham, J. Longman Group Ltd., London 1978. Volhard's Method. p. 342,