A STUDY ON INFLUENCE OF CADMIUM AND MERCURY ON GROWTH AND PROTEIN METABOLISM IN COWPEA SEEDLINGS

S. NAGOOR

Department of Botany, University School of Sciences, Gujarat University, Ahmedabad 380 009, India.

Cowpea (Vigna unguiculata L. var Pusa Falguni) seeds were germinated in DW (control), $CdCl_2(5x10^4 M)$ and $HgCl_2(5x10^4 M)$ under laboratory conditions upto 96h. The embryo and cotyledons were studied for protease activity, protein content, amino acid content and proline content. The seedling growth in terms of elongation and weight was inhibited by cadmium and mercury. Root was more sensitive than shoot; mercury was most effective; protein metabolism was altered. Mercury caused more adverse effect. The intensity of the adverse effect may be correlated with alteration in protein metabolism.

Keywords: Cadmium; Cowpea; Growth; Heavy metals; Mercury; Protein metabolism.

Introduction

Presence of cadmium and mercury in the germination media during germination of the seeds is considered as toxic conditions and the toxicity is related with the concentration of heavy metal. Cadmium and mercury have been singled out as especially hazardous by the environmental protection agency¹. Seedling growth was retarded by heavy metals^{2,3}. Heavy metals decreased the metabolic processes of the cell including nucleic acid, protein content⁴. Cadmium and mercury were selected as a source of heavy metals and their effects on growth and metabolism in cowpea seedlings were studied, since cowpea is one of the extensively cultivated pulse crops in India.

Materials and Methods

Cowpea (Vigna unguiculata L. var Pusa Falguni) seeds were germinated in the petriplates lined with filter paper in laboratory conditions using distilled water (DW), CdCl₂ $(5x10^4 M)$ and HgCl₂ $(5x10^4 M)$ as media upto 96h. Seedlings were analyzed for their growth and biochemical changes at the intervals of 24h. Growth parameters include the elongation of root, hypocotyl, epicotyl and total seedling length. Fresh weight, dry weight and moisture percent of embryo and cotyledon were also recorded. Protein metabolism was studied from the embryo and cotyledon of seedlings in triplicates at the interval of 24h. Protein metabolism includes protease activity⁵, protein content⁶, total amino acid content⁷ and proline content⁸.

Results and Discussion

Table - 1 reprsents the data on seedling growth of cowpea seeldings grown in different media. The elongation of root, hypocotyl and epicotyl was increased with increase in growth period. The growth rate of root and hypocotyl in metal treated seedlings was less indicating adverse effect of heavy metals on seedling growth. Data supports the earlier findings^{3,9,10}. The adverse effect of heavy metals was more on rc of than on shoot, indicating root is more sensitive to heavy metals than shoot. Breckle¹¹ reviewed the effects of heavy metal toxicity on root growth. Heavy metal accumulation is more in root than in aerial parts of th plant.

Data on fesh weight, dry weight and percent moisture of embryo and cotyledon was represented in Table-1. The fresh weight

Germi- nation period (h)	Treat- ment	Root length (cm/ seedling)	Hypocotyl length (cm/ seedling)	Epicotyl length (cm/ seedling)	Total seedling length (cm/seed- ling)	EMBRYO			COTYLEDON		
						Fr. Wt (g/seed- ling)	Dry Wt. (g/seed ling)	% Moisture (%)	Fr. Wt. (g/seed- ling)	Dry Wt. 9 (g/seed- ling)	6 Moisture (%)
the loss of	DW	0.88±0.03	1.11±0.02	0.14±0.02	2.13±0.04	0.018	0.004	77.78	0.160	0.058	63.75
24	Cd	0.68±0.02	1.33±0.03	0.16±0.02	2.15±0.03	0.021	0.002	90.48	0.150	0.080	46.67
	Hg	0.22±0.02	0.51±0.03	0.11±0.01	0.83±0.04	0.004	0.002	50.00	0.160	0.110	31.25
	DW	3.38±0.03	2.93±0.03	0.44±0.02	7.75±0.06	0.100	0.012	88.00	0.159	0.050	92.45
48	Cd	0.82±0.04	2.72±0.04	0.34±0.03	3.88±0.07	0.070	0.009	87.14	0,152	0.065	57.24
	Hg	0.44 <u>+</u> 0.02	0.99±0.03	0.32±0.01	1.74 <u>+</u> 0.04	0.020	0.004	80.00	0.150	0.093	38.00
	DW	3.98±0.04	6.07±0.03	0.69 <u>±</u> 0.03	10.72±0.08	0.227	0.032	85.90	0.140	0.045	67.86
72	Cd	1.13±0.03	4.57±0.03	0.62±0.03	6.30±0.08	0.125	0.026	79.20	0.150	0.062	58.67
	Hg	0.51±0.02	1.49±0.03	0.35±0.04	2.35±0.06	0.042	0.010	76.19	0.149	0.075	49.6 6
horie etc	DW	4.54±0.03	7.63±0.04	2.17±0.03	14.34±0.08	0.341	0.045	86.80	0.125	0.045	68.00
96	Cd	1.74±0.03	5.18±0.05	0.93±0.04	7.85±0.07	0.229	0.033	85.59	0.150	0.060	60.00
	Hg	0.55±0.02	1.85±0.03	0.45±0.02	2.85±0.02	0.052	0.011	78.85	0.145	0.073	49.66

Table 1. Effect of Cadmium and mercury of growth of cowpea seedlings.

Mean ± SE

and dry weight of embryo axis was inhibited significantly by mercury. Such effect was seen in 96h old seedlings grown with cadmium. Nassbaum *et al.*² and Kalimuthu and Sivasubramanian⁹ reported similar results in maize seedlings. The percent moisture is lowered especially in cotyledon of the heavy metal treated seedlings. The poor growth of the seedlings may be correlated with decrease in water uptake under heavy metal stress condition.

Table-2 represent the data on protein metabolism which include protease activity, protein, amino acids and proline contents in embryo and cotyledon of control and heavy metal treated cowpea seedlings. In embryo axis, protease activity was not much changed upto 72h in control seedlings, but increased in 96h old seedlings. In heavy metal treated seedlings and cotyleaon, the activity was more when compared to that in control seedlings. Mercury was most effective at 24h. Generally hydrolyzing enzymes are stimulated in stress conditions to provide more nitrogenous substances to the growing axis. In the present study, cadmium and mercury caused stress condition to the cowpea seedlings. Similar results were reproted by Bhattacharyya and Choudhuri¹²

Protein content in embryo axis, was increased with increase in gemination period in control as well as in heavy metal treated seedlings. During 24h, the protein content in heavy metal treated embryo was almost double the amount that was present in control seedlings. In cotyledon, also, the protein content was more in heavy metal treated seedlings. Increase in the time of treatment increased the protein content upto 48h, then, there was a decline in protein content. The heavy metal treated seedlings had more protein content than the control seedlings. Generally, plants synthesize

-	
P	
0	
0	
5	
-	
()	
ň	2
5	1
5	
0	
0	
. 8	
9	
-	
-	
0	
9	
3	
N. M	
E	
13.	
=	
1	
0	
-	
0	
0	
-	
>	•
-	
3	
0	
-	
P	
E	
P	
6	
63	
-	
E	
.=	
C	
-	
P	
3	
0	
-	
0	
5	
(D)	
y i	
4	
E	
3.0	
N	
9	
-	
-	
_	
- 00	
E	

gs.

2.

and the second s

(µg/mg dry wt) 0.632 ± 0.010 0.955±0.016 3.108±0.030 1.751±0.088 3.021±0.058 3.431±0.058 0.503±0.009 0.974±0.012 1.384±0.077 0.899±0.038 2.934±0.067 1.336±0.51 Proline content (µg/mg dry wt) 44.503±0.619 63.838+0.836 16.508±0.289 24.082±0.354 30.314±0.559 12.696±0.300 29.704±0.222 28.869±0.336 30.124±0.458 62.945+2.033 61.044±0.378 65.749±0.368 Amino acid content COTYLEDON (µg/mg dry wt) 127.233±1.200 155.115±2.963 160.909±3.200 49.848±1.123 111.535+0.637 110.584±0.879 178.350±1.348 09.438±0.502 149.464±4.301 33.230±0.570 98.140±0.321 9.491±1.125 Protein content 1.108 ± 0.060 1.786 ± 0.016 1.593±0.038 .06±60.032 3.026±0.056 0.96±10.018 1.056±0.037 1.496 ± 0.047 0.761±0.020 1.024 ± 0.057 3.163±0.026 1.573±0.071 Protease activity (*) (µg/mg dry wt) 2.997±0.015 4.581±0.133 1.951±0.063 2.681±0.063 3.150±0.079 3.014±0.024 2.122±0.033 3.916±0.046 4.077±0.017 7.051±0.035 .492±0.172 5.927±0.031 content Proline 290.644±2.960 367.959±2.416 (µg/mg dry wt) 106.470+2.229 396.603±0.464 110.780+1.769 56.144±1.240 44.658±0.649 50.242±0.424 55.371±1.454 55.934±0.865 92.296±1.755 98.669±0.807 Amino acid content EMBRYO (µg/mg dry wt) 109.253±2.139 93.832±0.829 95.645±1.218 94.878±0.990 85.814±1.840 43.296±0.525 92.405±0.651 73.766±0.221 97.881±0.304 79.960±0.657 91.111+0.625 90.233±0.184 content Protein .576+0.049 2.649±0.070 3.890±0.019 3.040±0.004 2.750±0.038 3.855±0.033 3.546±0.039 3.909±0.028 0.941 ± 0.007 0.893±0.021 4.554±0.351 0.906±0.009 Protease activity (*) Teeatment MO DW MO DW Cd Hg Cd Hg Hg PO PD Hg Germination period (4) 96 24 \$ 22

J. Phytol. Res. 10 (1-2): 31-34, 1997

90000

ermination period in both

alweinerstrade

Mean ± SE; * µg tyrosine lib/h/mg protein

some specific type of "stress proteins" in stress conditions. This may be one of the reasons for higher quantity of protein in cadmium and mereury treated seedlings. Cadmium binding protein was isolated from tomato roots¹³. Data supports the findings of Bhattacharya¹⁴.

Amino acid content was less in the initial stage but increased with increase in germination period in both control and heavy metal treated cowpea seedlings (Table-2). The amino acid contents in embryo and cotyledons of the heavy metal treated seedlings was more compared to that in control seedlings. The accumulation of amino acids and proline was more in 96h old seelings, suggesting that the longer duration of the treatment results into accumulation of these substances. The amino acid and proline content was more in mercury treated seedlings, suggesting its more adverse effects in plants. Tolerance mechanism in plant is associated with accumulation of amino acids¹⁵ and proline^{16,17}. Above data supports the findings of Narwal and Singh¹⁸ and Bhattacharyya and Choudhuri¹².

Acknowledgements

Thanks are due to Dr. A.V. Vyas for encouragement and the Head, Department of Botany for providing necessary laboratory facilities.

References

- 1. Lynn DA 1976, Air pollution threat and responses. Addission Wesley Publishing, 71
- 2. Nassbaum S, Schmutz D and Brunoid C 1988, Plant Physiol. 88 1407
- 3. Nag P, Nag P, Pual AK and Mukherji S 1989, Bot. Bull, Academia Sinica 30 (4) 241
- 4. Nag P, Paul AK and Mukherji S 1981, Indian J. Exp. Biol. 19 702
- Penner D and Ashton FN 1967, Plant Physiol.
 42 791
- 6. Lowry OH, Rosenbrough NJ, Farr AL and Randall RJ 1951, J. Biol. Chem. 193 265
- 7. Harding VJ and Maclean RM 1916, J. Biol. Chem. 24 503
- 8. Bates LS, Waldrin LP and Tears ID 1973, Plant and Soil 39 205
- 9. Kalimuthu K and Sivasubramanian R 1990, Indian J. Plant Physiol. 33 242
- 10. Vyas AV and NagoorS 1993, Natl. Sym. Environ. Abst. No. 38 54
- 11. Breckle SW 1989, In: Y. Waisel, U. Kafkafi, A. Eshel (Eds) The root system: The Hidden Half, Marcel Dekker Inc., N.Y.
- 12. Bhattacharyya M and Choudhuri MA 1994, Indian J. Plant Physiol. 27 99
- 13. Kim HL and Rauser WL 1986, Plant Physiol. 81 896
- 14. Bhattacharya ID 1991, J. Environ. Biol. 12 89
- Page AL, Bingham FT and Chang AC 1981, In: N.W. Lepp (Ed.) "Effects of trace metals on plant function", Allied Sci Pub, London.
- Angelov M, Tsonev T, Dobrinova K, Velikova V and Stoyanova T 1993a, Photosynthetica 28 289
- 17. Angelov M, Tsonev T, Uzunova A and Gaidardjieva 1993b, Photosynthetica 28 341
- 18. Narwal RP and Singh M 1993, Indian J. Plant Physiol. 36 170