SCREENING FOR BIOACTIVE PHYTOCHEMICALS AND CALLUS PRODUCTION IN ALSTONIA VENENATA R.BR.

G. SANGEETHA* and S.R. DEEPTHI

Department of Botany, University College, Thiruvananthapuram-695034, Kerala, India. *Corresponding author : E-mail:sangeetharkr@gmail.com.

Alstonia venenata R.Br. is a small sized evergreen tree belongs to the family Apocynaceae. It has many medicinal properties. In the present study micropropagaion, biochemical analysis, phytochemical screening and antimicrobial activity of Alstonia venenata were done. A suitable proportion of media has been standardized for the callus production of Alstonia venenata R.Br. in MS medium using different hormonal combinations like 2, 4-D + Kinetin, 2, 4-D + BAP, NAA + kinetin, NAA + BAP, IAA + Kinetin, IAA + BAP, IBA + Kinetin and IBA + BAP. Leaf and internodal segments were used as explants. Biochemical and phytochemical analysis of both stem bark powder and fresh callus indicated the presence of phenols, carbohydrates, protein, chlorophylls, free aminoacids, alkaloids, glycosides, terpenoids. Metabolites were separated through thin layer chromatography (TLC), fractionation by column chromatography. Each fraction were collected and then subjected to phytochemical screening and bioactivity test, isolated compounds coded as C_1, C_2 and C_3 also showed remarkable results. Regarding antibacterial activity, significant results were observed at a concentration of 15.4 mg/disc against all test organisms, total inhibition of fungal growth at 154mg/ml in the antifungal studies comparable to standards.

Keywords : *Alstonia venenata* R. Br; Antimicrobial activity; Biochemical analysis; Callus production; Methanol extract; Phytochemical screening.

Abbreviations: BAP: 6 - Benzyl aminopurine, 2, 4 D: 2, 4 Dichlorophenoxy acetic acid, NAA: α - Naphthalene acetic acid, IAA: Indole - 3- acetic acid, IBA: Indole- 3- butric acid, MS: Murashige and Skoog.

Introduction

Alstonia venenata R.Br is a small tree up to 6.0m in height. Stem bark are grayish, rough, hard, lenticellate, exudes latex when injured. Leaves are glabours, oblong to lancelolate¹. Flowers white, in terminal subumbellate pedunculate cymes. Seeds are flattened, linear oblong. The ripe fruit is tonic; it is used in syphilis, insanity and epilepsy. Roots are bitter, astringent, thermogenic, depurative, febrifuge and anodyne². Major compounds isolated are alsovenine, venalstonine, venalstomidine, venenatin³ etc. It is a medicinally important threatened plant hence it require conservation. Micropropagation is a useful method of multiplication of this plant. In the present study micropropagaion, biochemical analysis, phytochemical screening and antimicrobial activity of *Alstonia venenata* were done.

Material and Methods

In the present study explants for *in vitro* culture (healthy young leaves and internodes from young saplings), mature stem bark were taken from *Alstonia venenata* R.Br. brought from inferior forest of Ponmudi hills. Explants for tissue culture were planted in the green house of the Department of Botany, University College, Thiruvananthapuram. Systematic position was confirmed by taxonomical studies⁴. Sample has been documented. The collected mature stem bark were weighed; oven dried at 39°C, weighed and powdered, extracted in methanol for 8 hours continuously to obtain bioactive principles from the bark. Crude extract was concentrated, weighed and made up to 100ml. It is kept in sterilized bottle under refrigerated condition until use (Table 1).

Callus production of Alstonia venenata R. Br-Tissue cultures of *Alstonia venenata* were initiated in MS medium⁵. Phytohormones used in the medium were auxins such as IAA, IBA, NAA and 2, 4-D and Cytokinins namely BAP and Kinetin in either singly or in combinations. Leaves and internodes were taken as explants. The surface sterilized material was inoculated in culture tubes and inoculated tubes were then taken into incubation room. Growth characteristics and other features of the callus were

Sangeetha & Deepthi

Plant part	Fresh weight (g)	Dry weight (g)	Powder weight (g)	Quantity (g)	Weight 10ml crude(g)	Material used for bacterial study (mg/disc)	Material used for fungal study (mg/ml)
Stem bark of A.venenata	1000	260	260	90	3.08	15.4	154

Table 1. Quantitative data of Alstonia venenata R.Br.

Table 2. Biochemical studies on stem bark powder and fresh callus.

Parameters	Stem bark powder (mg/g)	Fresh callus (mg/g)
Total Phenol Total Carbohydrate Total Protein Free Aminoacids Reducing sugar Tannin Cellulose Chlorophyll a Chlorophyll b Total chlorophyll Carotenoid	$\begin{array}{c} 0.024\\ 24.0\\ 10.186\\ 0.592\\ 0.124\\ 2.0\\ 0.163\\ 0.007219\\ 0.000856\\ 0.008044\\ 0.024520\end{array}$	0.009 15.40 1.581 0.066 0.057 Nil Nil 0.000851 0.002482 0.003355 0.004072

Table 3. Distribution of Secondary metabolites in methanol extract of stem bark and fresh callus.

Phytochemicals	Stem bark extract	Callus extract	
Reducing sugar	+	+	
Glycosides	+	+	
Flavanoids	_	-	
Tannins	+	-	
Terpenoids	+	+	
Steroids	-	-	
Phlobatannins	-	-	
Alkaloids	4	+	
Coumarins	+	+	
Saponins	· +	+	
Anthraquinones	er 	-	
Iridoids	_	<u>-</u> .	

noted. Sub culturing was done at four week intervals⁵. *Biochemical Analysis*-Dried stem bark powder and fresh callus were used for analysis of total phenols (Folin Ciocalteau method), reducing sugar (Dinitrosalycylic acid method), total carbohydrates (Anthrone method), total protein (Lowry's method), chlorophyll (Arnon's method), amino acids (Ninhydrin method), tannin (Schanderl's method) and cellulose (Updegroff's method)^{6,7}.

Phytochemical Screening -The phytochemicals like reducing sugar (Fehling's test), glycosides (Keller Killani test), flavanoids (Shinoda test), alkaloids (Dragendroff's method), tannins, steroids, Terpenoids (Libermann Burchard method), coumarins, saponins, anthraquinones, phlobatannins and iridoids were tested^{6,7}. The stem bark extract and callus extract (Fresh callus was grind with distilled water) were used for phytochemical screening⁷.

8

Extract	ct Solvent system Ratio Observati		Observation	Compounds	Rf Value
	Benzene:	2:3:5	Green,	Glycosides	0.98
	Chloroform:		Orange	Alkaloids	0.94
	Methanol		Reddish Orange	Terpenoids	0.92
		1	Yellow	Phytosterols	0.80
		1. Courte	Brown	Phenolic	
Methanol		1. B. S. S.		compounds	0.70
Methanol	· · · · ·		Grev	Phenolic	
				compounds	0.60
	Methanol:	And the second second	Green	Glycosides	0.98
	Benzene	1:1	Orange	Alkaloids	0.94
	Donzono		Yellow	Terpenoids	0.92
			Brown	Phenolic	
				compounds	0.70

Table 4.	Phytochemical	screening of methanol	extract by	TLC.
----------	---------------	-----------------------	------------	------

Table 5. Response of internodal and leafy explants of Alstonia venenata in MS medium.

No.	Hormone combinations	Concentration of hormone combinations (mg/l)	Callus from leaves of A.venenata	Callus from internodes of <i>A.venenata</i>	Remarks of Callus
1.	2,4-D&BAP	1.5& 2	++++*	+++	Brownish white
	and the second	2.5&2			
2	2,4-D&Kinetin	1.5& 2	+ + + +	+++	White callus
		2.5&2			
3.	NAA&BAP	1.5& 2	+++	++	Greenish white
		2.5&2			
4	NAA&Kinetin	1.5& 2	+++	++	Greenish white
		2.5&2			
5.	IAA&BAP	1.5& 2	++	Nil	White callus
		2.5&2	an I a		
6.	IAA&Kinetin	1.5& 2	· · · +,	Nil	White callus
	and the second second	2.5&2			
7.	IBA&BAP	1.5& 2	++++	++	White callus
		2.5&2			
8.	IBA&Kinetin	1.5& 2	+++	+ +	Brownish white
		2.5&2			

"Callus growth is indicated by + marks

meager callus growth (callus fresh weight<0.5 g after 4 weeks)

= average callus growth (callus fresh weight 0.5g to <1g after 4 weeks)

--- : profuse callus growth (callus fresh weight 1g to <1.5 g after 4 weeks)

----- : Maximum growth (callus fresh weight 1g to <1.5 g after 4 weeks)

This layer chromatography -Qualitative chemical analysis of crude extract was performed by Thin layer dominatography by different solvent systems indicated the presence of servids, flavanoids, phenolic compounds and

Terpenoids8.

Chromatographic fractionation- On chromatographic fractionation several fractions of 20ml each were collected and their homogeneity was monitored by using T.L.C

9

Fig.1. *In vitro* callus production of *Alstonia venenata* R.Br. A: Callus induction in 2,4-D+BAP Combination; B: Callus induction in 2,4-D+Kinetin Combination; C: Callus induction in NAA+BAP Combination; D: Callus induction in NAA+Kinetin Combination.

behavior. Identical fractions were pooled together to get single compound or mixtures. Twelve compounds obtained each of them washed with respective solvents and alcohol. Final products were allowed to crystallize. All the compounds were subjected to antibacterial activity and antifungal activity. Effective bioactive compounds only were selected and coded as C₀, C₂, C₃. bioactivity and chemical analysis of these compounds were performed⁴⁹.

Bioactivity assays by in vitro methods-

• Antibacterial activity assay: Crude stem bark extract and callus extracts were subjected to their antibacterial property against pathogenic and industrially important strains of bacteria by disc diffusion method¹⁰. Bacteria were provided from microbiology lab of Medical College,

Trivandrum.

• Antifungal activity assay: Conducted antifungal activity studies against common phytopathogenic forms of fungi with crude stem bark extract in methanol at two different concentrations by incorporating crude extract in the media". All the strains of fungi used here were procured form Agricultural College, Vellayani, Trivandrum. Results and Discussion

Callus growth of *Alstonia venenata* in different hormone combinations shown in Table 5 (Fig 1.A to H). Biochemical and phytochemical analysis on both stem bark powder and fresh callus were shown in Table 2, 3 and 4. Twelve different compounds were obtained through column chromatography (Table 6). All the twelve compounds were subjected to preliminary phytochemical

Example 2 Combination in IAA+BAP Combination; F: Callus induction in IAA+BAP Combination; F: Callus induction in IBA+BAP Combination; H: Callus induction; H: Callus inductio

entract and compounds c., c., c, were shown in Table 7

Reports regarding bioactive properties in members of the family Apocynaceae strongly members of the family Apocynaceae strongly members of the family and the structure and bioactivities for the family from different members of the family from of a natural medium for the family and their bioactivity in *Alstonia* activity of leaves of *Alstonia scholaris* and the presence of *Iridoids*, alkaloids, and the presence of Iridoids, alkaloids, alk tannins⁴⁴⁵. Antibacterial effect of the crude leaf and stem bark extracts of *Alstonia venenata* in solvent systems like hexane, benzene, isopropanol, ethyl acetate, methanol, and water were investigated⁴⁶.

From the results of present study, it was concluded that-Stem bark and fresh callus of *Alstonia venenata* R.Br showed the presence of various phytochemicals which showed antimicrobial properties against phytopathogens.

- The use of plant extract provides a potential alternative to antibiotics against phytopathogens and the compounds C_i, C_i, C_i, C_i, evere as potent as standards.

Hence, stem bark extract of *Alstonia venenata* R.Br deserve further investigation. References

1. Gamble J S 1967, Flora of presidency of Madras, Vol 2, Printed under the authority of the Govt of India

11

Sangeetha & Deepthi

12

Table 6. Chromatographic fractionation of methanol extract.

Table 0. Chromatographic	Duration	Volume (ml)	colour	yield I	Bioactivity*
Eluent	Fraction	volume (m)		Very less	Not enough for further
Hexane	F ₁ -F ₁₀	. 220	Light yellow	very less	work
Hexane : Benzene (70:30)	F ₁₁ -F ₂₂	240	Light yellow	67	(-) (-)
Hexane : Benzene (30:70)	F ₂₃ -F ₃₄	240	Slight yellow	Very less	Not enough for further work
Benzene	F ₃₅ -F ₄₉	300	Pale white crystals	97	(+) (+) coded as C ₁
Benzene:Chlorform (70:30)	F ₅₀ -F ₆₃	260	Pale orange	Very less	Not enough for further work
Bonzene:Chloroform	FF.	300	Light Orange	79	Less active
(30:70) Chloroform	F ₇₉ -F ₉₅	260	Pale white pasty	99	(+) (+) coded as C_2
Chloroform: Ethyl	F ₉₆ -F ₁₀₈	240	Light brown soln	Less quantity	Not enough for further work
Chloroform: Ethyl acetate (30:70)	F ₁₀₉ -F ₁₂₂	260	Brown soln	Very less	Not enough for further work
Ethyl acetate Ethyl acetate:Methanol	$\substack{F_{123}-F_{136}\\F_{137}-F_{143}}$	280 280	Brown wax like Greenish brown soln	91 Very less	(-) (-) Not enough for further work
Ethyl acetate: Methanol	F ₁₄₉ -F ₁₆₀	240	Pale white granule	93	(-) (-)
(30:70) Methanol	F ₁₆₁ -F ₁₇₃	240	White granules	96	(+) (+) coded as C ₃
Methanol:Distilled Water	F ₁₇₄ -F ₁₈₃	240	Light white	Very less	Not enough for further work
(70:30) Methanol:Distilled Water	F ₁₈₄ -F ₁₉₂	300	Light granules	Very less	(-) (-)
(30:70) Distilled Water	F ₁₉₃ -F ₂₁₅	240	White colour	91	Not enough for further work
Distilled Water:NaCl	F ₂₁₆ -F ₂₂₅	240	Very light white	79	(-) (-)
(70:30) Distilled Water:NaCl	F ₂₂₆ -F ₂₃₄	260	Light white	Very less	(-) (-)
NaCl	F ₂₃₅ -F ₂₄₂	280	Colour less	Very less	Not enough for further work
NaCl:Oxalic acid (70:30) FF	240	Colour less	72	(-) (-)
NaCl:Oxalic acid (30:70) $F_{257} - F_{23}$	250	Colour less	91	Not enough for further work
Ovalia acid	FF	220	Colour less	Very less	(-) (-)
		C. M. C. N. L. R. S. Sect. Barry			5 Jac 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

*Bioactivity 1. against Bacillus subtilis, 2. against Rhizopus nigricans (+) active, (-) not active

No.	Test Organisms	Zone of inhibition in mm							
		225mg/disc	15.4mg/disc	C ₁	C ₂	С,	*Standard	Control	
		Callus extract	Stem bark extract	1mg disc	l mg disc	1 mg disc			
1	Bacillus subtilis	10mm	14mm	9	11	12	23	-	
2	Bacillus brevis	8mm	12mm	8	12	14	22	-	
3	Escherichia coli	9mm	10mm	9	8	9	19	-	
4	Bacillus mycoides	11mm	1 5 mm	10	11	14	21	-	
5	Bacillus coagulans	9mm	13mm	8	9	11	23	-	

Table 7. Antibacterial activity of methanol extract (mg/ml).

(-) No zone of inhibition, *Standard-Ampicillin

Table 8. Antifungal activities of methanol extract (mg/ml).

No.	Test Organisms	77mg/ml Stem bark extract	154mg/ml Stem bark extract	C1 5mg/disc	C2 5mg/disc	C3 5mg/disc	Control	*Standard
1	Candida tropicalis	+	+	+	+	+	-	+
2	Phytophthora infestans	+/-	+	+/-	+	+	-	+
3	Pencillium italicum	+	+	+/-	+	+	-	+
4	Mucor sps.	+	+	+	+ .	+	-	+
5	Rhizopus nigricans	+	+	+	+	+	-	+

[-] No inhibition, (-/+) Partial inhibition, (+) Total inhibition, *standard-Miconazol

800-821.

- Murashige T and Skoog F 1962, A revised medium for rapid growth and bioassays with tobacco tissue cultures. *Physiol. Plant.* 15(3) 473-497.
- Collins C H and Lyne P M 1970, Micobiological methods.
 Third edition, Bullerworth and Co.Ltd 414-427.
- Groundachari T R 1965, Alkaloids from Alstonia
 menenata, Melodunus australlis and Catheranthus
 malis, J. Tetrahedron Lett. 2239.
- Williams and Thankamani 2007, Formulation of a natural medium for the induction of callus and their bioactivity in Alstonia venenata R.Br. Research J. Biorechn. 2 5-8.
- Harbone JB 1973. Phytochemical method, A guide modern techniques of plant analysis. Chapman and Hall, London 278.
- Kokanae C K. Purohit A P and Gokhalae S B 2008, Pharmacognosy-forty second edition, Nirali Phakashan 7.1-11.146.
- Biochemistry, Willey Eastern Ltd, New Delhi, 180.
- Stalk and Rice 1974, Chromatographic methods.

Chapman and Hall New York, 383.

- Deepthi S R, Remya R and ThankamaniV 2008, Antibacterial activity studies and phytochemical screening on the methanol extract of *Alstonia* scholaris R.Br, Research J. Biotec. 3(4) 40-43.
- Singh U P, Saema B K, Mishra P K and Ray A B 2000, Antifungal activity of Indole alkaloids, venenatin from *A.venenata*. J. Folia Microbiologica 45(2) 173-176.
- Krithikar K R and Basu B D 1918, Indian Medicinal Plants, Vol 2, Sudhindranath Basu Bhuwaneshwari Asramam Behadurganj 761-1319.
- 13. Sutha S, Athiperumalsami T, Mohan V R and Maruthupandian A 2011, Anti-imflammatory activity of leaf of *Alstonia venenata* R.Br. J. Herbal Medicine and Toxicology 5(2) 37-39.
- Chatterjie A, Roy D J and Muhopadhayay S 1978, Alkaloids from the fruits of *Alstonia venenata*, J. Sci. Ind. Res. 37 187.
- 15. Bauer AW, Kirby W M and Sherris J C 1966, Antibiotic susceptibility testing by standard method. *Ames. J. Clinical Pathol.* **45** 493-496.