STUDY ON EFFECTIVENESS OF DUAL INOCULATION WITH *RHIZOBIUM* AND VA MYCORRHIZA ON GROWTH AND BIOMASS PRODUCTION OF FABA BEAN *(VICIA FABA* L.) GROWN IN KOTA DISTRICT OF RAJASTHAN

KRISHNENDRA SINGH NAMA and RASHMI VARMA Department of Botany, Govt. College, Kota, Rajasthan, India.

Pot experiments were carried out to investigate the effect of *Rhizobium leguminosarum* and VA Mycorrhiza on the growth and biomass production of faba bean. The biofertilizers were applied in combination. The obtained results demonstrated that the dual inoculation of faba bean plants signi?cantly increased the plant biomass, nodulation, nitrogen ?xation activity in comparison with uninoculatedcontrol. On the other hand, co-inoculation signi?cantly increased the total plant protein, chlorophyll N-content and phosphorus content in plant tissue and percentage of root colonization. The study clearly shows that a combined application of biofertilizers is an essential requirement for the growth and biomass production of faba bean.

Keywords : Dual inoculation; Rhizobium; VA mycorrhiza; Vicia faba.

Introduction

Faba bean (Vicia faba L.) is the important grain and forage legume in all around the world. It serves as an important source of protein for humans. The nitrogen-fixing interaction between *Rhizobium*, legumes and the mycorrhizal association is the most two commonly studied symbiosis¹. Biofertilizers areproducts containing living cells of different types of microorganisms, which have an ability to convert nutritionally important elements from unavailable to available form through biological processes^{2,3}.

Rhizobia stimulate plant growth mainly by modifying root development, which improved macro and micronutrients and water uptake, particularly in the early stages of plant development⁴. The plant host organisms may be affected by one or more mechanisms such as nitrogen fixation, enhancing nutrient uptake, production of plant growth promoting substances, phytohormones, and organic acids, as well as protection of plant from pathogens⁵⁻⁸ and the organism benefits by acquiring photosynthates from the plant.

Arbuscular mycorrhizae (AM) are symbiotic associations, formed between plants and soil fungi that play an essential role in plant growth, plant protection, and soil quality. The AM fungi expand their filaments in soil and plant roots. This filamentous network promote bi-directional nutrient movement where soil nutrients and water move to the plant and plant photosynthates flow to the fungal network⁹. (V)A Mycorrhizal symbiosis may benefit the host plant primarily by increasing the ability of the root system to absorb and translocate phosphorus through an extensive network of external hyphae¹⁰. A significant increase in plant dry weight, N and P content were observed wherever the tripartite association of rhizobia, mycorrhizal fungi, and legumes were present¹¹. **Material and Methods**

The plants of *Vicia faba* and soil were collected from 5 different fields of 3 selected localities, namely KeshavRaiPatan, Kaithoon and Borkhera of Kota district of Rajasthan. Collection, isolation, purification and authentication of rhizobium culture were done by recommended method¹². Multiplication of rhizobial culture was done onYeastExtract Mannitol Agar medium.(V)AM inoculation was procured by sieving and decanting method¹³.

The seeds were inoculated with 500 mg of mycorrhizal inoculum (approximately 250 spores), by placing 2 cm below the seed level and 0.5 ml of rhizobial culture. Experiments were conducted in black cotton soil with a mild alkaline pH in earthenware pots. Healthy seeds of faba bean (*Vicia faba* L.) were employed throughout the study. Two treatments involved in the study under sterilized soil conditions are as follows:

1. Uninoculated (Control);

2. Five dual inoculations with both (V)AM fungus and Rhizobium (VfRHz 1-5+(V)AM) of five different fields

Table 1. E(Values ar	Table 1. Effect of dual inoculation of Rh (Values are mean \pm Standard Deviation	ulation of <i>Rhizo</i> . rd Deviation of	<i>izobium</i> and (V)A N of 3 replicates)	Table 1. Effect of dual inoculation of <i>Rhizobium</i> and (V)A Mycorrhiza on growth, nodulation of <i>Vicia faba</i> Linn. (Values are mean \pm Standard Deviation of 3 replicates)	vth, nodulatio	n of <i>Vicia faba</i> I	inn.	7	2
Names of pot	Shoot Length (cm)	Root Length (cm)	Fresh Wt. of plant (gnı)	DryWt. of plant (gm)	No. of Pods	Pod Wt. (gm)	No. of Nodules	Nodule Fresh Wt. (mg)	Nodule Dry Wt. (mg)
VfRhz 1	26.9±0.5507	22.8±0.2657	42.0±0.5589	12.0±0.6813 2	28±1.5275	17.6±0.1400	196±1.00	593±3.055	487.5+0332
VfRhz2	28.1±0.4219	23.6±0.2003	53.8±0.5850	13.2±0.2605	32±1.00	19.6±0.5577	244±2.0816	715±4.5825	598±3.5118
VfRhz3	30.7±0.1253	25.6±0.3165	54.2±0.2909	16.2±0.3121	36±1.00	22.2±0.2163	278±1.1547	834±4.5092	710±6.5064
VfRhz4	33.5±0.4550	31.2±0.2961	63.6±0.3160	17.6±0.3821	37±0.5773	22.8±0.3958	328±2.0816	328±2.0816 986±4.0414	812±6.0277
VfRhz5	25.6±0.3579	20.5±0.1418	35.22±0.6058 11.6±0.1171		27±0.5773	15.64±0.2400	184±2.0816	184±2.0816 562±5.5075	437±4.0414
Control	20.7±0.6557	17.2±0.3511	22.62±0.4371	22.62±0.4371 05.30±0.3055	9±1.00	9.18±0.4086	ZERO	ZERO	ZERO
Table 2. Effec (Values are m Names of pot	Table 2. Effect of dual inoculation of R(Values are mean ± Standard DeviationNames of pot	oculation of <i>Rhi</i> ard Deviation of Total I	of 3 replicates) of 1 replicates) Al Plant Protein Tot	Table 2. Effect of dual inoculation of <i>Rhizobium</i> and (V)A Mycorrhiza on phytochemical aspects of <i>Vicia faba</i> Linn.(Values are mean ± Standard Deviation of 3 replicates)Names of potTotal Plant Protein Total Plant ChlorophyllNames of pot(VALUE)	ytochemical asp /1 N-content // A-r. mic.t	aspects of <i>Vicia</i> ,	faba Linn. P-content	N ₂ ase activity	ctivity
κ."			(mg/g)	(mg/lt)	(% dry weight)		(% dry weight)		
VfRhz 1		93.3	93.34±0.9465	1.04±0.0305	4.41±0.3212		0.59±0.0568	1.08±0.1193	.1193
VfRhz2		95.6	95.69±0.9624	1.17±0.0251	4.46±0.3928		0.61±0.0986	1.13±0.1311	.1311
VfRhz3		104.	104.58±0.8818	1.34 ± 0.04	4.44±0.4067		0.64±0.08717	1.19±0.1081	.1081
VfRhz4		110.	0.04±0.9816	1.42±0.0173	4.58±0.4869		0.68±0.0832	1.24±0.1305	.1305
VfRhz5		87.6	87.67±0.7902	0.94±0.02	4.38±0.3523		0.49±0.0251	0.98±0.07	0.07
Control	``	28.6	28.66±0.8542	0.57+0416	3.39±1.3917		0.38±0.0873	ZERO	g

228

Nama & Varma

of three selected localities.

The plants were grown for 45 days with average day and night temperatures of 28°C and 20°C, respectively. Data on shoot and root length, fresh weight and dry weight of plant, number of pods, pod weight, nodule number, fresh weight and dry weight of noduleswas recorded at 45 days after inoculation. The total plant protein was estimated by Lowery *et al.* method¹⁴; total chlorophyll content by Arnon method¹⁵; nitrogen–by Microkjeldahl method¹⁶; total phosphorus content in plant roots and shoots by Vanadomolybdate phosphoric yellow colour method¹⁷ and quantitative estimation of total soluble sugars was done by Dubois *et al.* method¹⁸.

Results and Discussion

Inoculation with vesicular arbuscular mycorrhizal fungi and rhizobial isolates significantly increased shoot-root length, fresh-dry weight of plant, number of pods, pod weight, number of nodules and fresh-dry weight of nodules respectively, in comparison to the uninoculated control. This interaction was studied by conducting a pot culture experiment in sterilized conditions. The effects of dual inoculations were compared with uninoculated control plants (Table 1).

A. Plant growth and nodulation:- The most remarkable results were obtained from the seedlings inoculated with dual combination of rhizobial isolate VfRhz 4+(V)AM, whose growth and nodulation parameters like shoot length (33.5 cm), root length (31.2 cm), fresh weight of plant (63.6 gm), dry weight of plant (17.8 gm), number of pods (37), pod weight (22.8 gm), nodule number (328), nodule fresh weight (986 mg) and nodule dry weight (812 mg) were higher , respectively than that of VfRhz 3+(V)AM, VfRhz 2+(V)AM, VfRhz 1+(V)AM and VfRhz 5+(V)AM at 45 days of inoculation. The uninoculated (control) plants, grown in sterilized soils did not form any nodules and recorded the lowest values for all above parameters (Table 1).

B. Phytochemical parameters:- The dual inoculation had significant effect on phytochemical parameters like total plant protein, total plant chlorophyll, N-content, P-content and N2ase activity. Significant positive correlations were observed between colonization of (V)AM and all nitrogen fixing bacterial isolates. Among all five dual combinations, VfRHz 4+(V)AM was observed statistically most significant in total plant protein (110.04 mg/g), total plant chlorophyll (1.42 mg/g), N-content (4.58 %), P-content (0.68 %) and N₂ase activity (1.24 μ mol. C₂H₄. g nodule fresh weight⁻¹ h⁻¹). The above mentioned phytochemical parameters were much lower in non-treated control faba seedlings (Table 2).

The results indicate that dual inoculation of faba bean with *Rhizobium* and (V)AM fungus results in significant increase in the growth *i.e.*, fresh and dry weight, length of the root and shoot etc. nodulation as compared to uninoculated control. Previous researches revealed that nodulation, growth, yield, and nutrient uptake of faba beans can be significantly enhanced by both *Rhizobium* and mycorrhizal inoculation¹⁹⁻²³. Moreover, early findings reported that the dual inoculation with both rhizobia and mycorrhizae induced significant increase in plant dry weight, N and P content of faba bean than uninoculated control^{19,24}. It is also reported in green gram²⁵ and cowpea²⁶⁻²⁸ that tripartite symbiosis between host plant, *Rhizobium* and (V)AM fungi increased the growth and nodulation.

(V)AM improved the uptake of nutrients by extra radical mycorrhizal hyphae²⁹. Similar effects of mycorrhizae were also reported by Mamta and Tilak³⁰. They studied the effect of *Rhizobium* species and mycorrhizal fungus on nutrient of mungbean.Inoculation with AM fungi promoted biomass production and photosynthetic rates in *Vicia faba* because of the enhanced P supply due to AM fungi inoculation³¹.

In conclusion the results of this study indicate that the dual inoculation with (V)AM fungus and *Rhizobium* is beneficial to *Vicia faba* L. for its better growth and development with increased growth, nodulation, phytochemical parameters and hence probable increase in the N fixation by the plant as also reported by different workers in the other legumes.

References

- Newman E I and Reddell P 1987, The distribution of mycorrhizas among families of vascular plants. *New Phytol* 106 745-751. Oldroyd GED, Engstrom EM, Long SR. 2001. Ethylene inhibits the Nod factor signal transduction pathway of *Medicago truncatula*. *Plant Cell* 13 1835-1849.
- Hegde D M, Dwived B S and Sudhakara S N 1999, Biofertilizers for cereal production in India review. Indian J. Agric. Sci. 69 73-83.
- Vessey J K 2003, Plant growth promoting rhizobacteria as biofertilizers. *Plant Soil* 255 571-586.
- 4. Antoun H, Beauchamp C J, Goussard N, Chabat R and Lalande R 1998, Potential of *Rhizobium* and *Bradyrhizobium* species as plant growth promoting rhizobacteria on non-legumes; Effect on radishes (*Raphanussativus* L.). *Plant and Soil* **204** 57-67.
- Dileep-Kumar B S and Dube H C 1992, Seed bacterization with a fluorescent *Pseudomonas* for enhanced plant growth, yield and disease control. *Soil Biol. Biochem.* 24 539-547.
- Duijff R J, Metjer J W, Bakker PAHM and Schippers B 1993, Siderophore mediated competition for iron and induced disease resistance in the suppression of

Nama & Varma

Fusarium wilt of carmation by fluorescent Pseudomonas spp. Neth. J. Plant Pathol. 99 277-291.

- Dileep-Kumar B S 1999, Fusarial with suppression and crop improvement through two rhizobacterial strain in chickpea growing in soils infested with *Fusarium oxysporum. Biol. Fert. Soils* 29 87-91.
- Dileep-Kumar B S, Berggren I and Martensson AM 2001, Potential for improving pea production by coinoculation with fluorescent *Pseudomonas* and *Rhizobium. Plant and Soil* 229 25-34.
- Seguin S, Desaulniers N, Dalpé Y and Levesque CA 2003, Development of AMF strains specific primers for detection in field-growen colonized roots. 4 Int. Conf. Mycorrhizae. Montreal Quebec Canada. August 10-15 2003. No. 444.
- Hayman D S 1983, The physiology of Vesicular arbuscular endomycorrhizal symbiosis. Can. J. Bot. 61 944-963.
- Mott J B and Zuberer DA 1987, Effect of symbiotic association on clover grown in mine spoil. In: D.M. Sylvia, L L Hung and G.H. Graharm (Ed). "Mycorrhiza in the Next Decade". U.S.A.
- 12. Vincent J M 1970, *A manual for the practical study* of the root-nodule bacteria.I.B.P. Handbook No.15. BlackwellScientificPublications, Oxford, London.
- Gerdeman J W and Nicolson T H 1963, Spores of mycorrhizal Endogonespecies extracted from soil by wet sieving and decanting. *Trans. Brit. Mycol. Soc.* 46 235-244.
- Lowry O H, Rosebrough A L, Farr and Randall R J 1951, Protein measurement with the Folin-Phenol reagent. J. Biol. Chem. 193 265-275.
- 15. Arnon D I 1949, Copper enzyme in isolated chloroplasts. Polyphenol oxidase in *Beta vulgasis*. *Plant Physiology* 24 1-5.
- 16. Bremner J M 1960, Determination of nitrogen in soil by Kjeldahl Method. J. Agric. Sci. 55 11-33.
- 17. Chapman H D and Pratt P E 1961, *Methods of analysis* for soils, plants and waters, pp. 169-170. Univ. Of California.
- Dubois M, Gilles K, Hamilton J K, Rebers P A and Smith F 1956, A colorimeter method for the determination of sugars. *Nature* 168 167.
- El-Ghandour I A, El-Sharawy M A O and Abdel-Moniem E M 1996, Impact of vesicular arbuscular mycorrhizal fungi and *Rhizobium* on the growth and P, N and Fe uptake by faba-bean. *Fertilizer Res.* 43 43-48.
- Ahmed A E and Elsheikh E A E 1998, Effects of biological and chemical fertilizers on growth and symbiotic properties of faba bean under salt stress. U.K.J. Agric. Sci. 6 150-164.
- 21. Rabie G H 1998, Induction of fungal disease

resistance in *Vicia faba* by dual inoculation with *Rhizobium leguminosarum* and vesicular-arbuscular mycorrhizal fungi. *Mycopathologia* 141 159-166.

- Koreish E A, El-Fayoumy M E, Ramadan H M and Mohamed W H 2004, Interaction effect of organic and mineral fertilization on faba bean and wheat productivity in calcareous soils. *Alex. J. agric. Res.* 49 101-114.
- Talaat B N and Abdallah M A 2008, Response of faba bean (Vicia faba L.) to dual inoculation with *Rhizobium* and (V)A mycorrhiza under different levels of N and P fertilization. J.Applied Sci. Res. 4(9) 1092-1102.
- 24. Badr El-Din S M S and Moawad H 1988, Enhancement of nitrogen fixation in lentil, faba bean, and soybean by dual inoculation with Rhizobia and mycorrhizae. *Plant and Soil* **108** 117-124.
- 25. Saxena A K, Rathi S K and Tilak K V B R 1997, Differential effect of various endomycorrhizal fungi on nodulating ability of green gram by *Bradyrhizobium* sp. (Vigna) strain S24. Biol. Fertil. Soils 24 175-178.
- 26. Thiagarajan T R, Ames R N and Ahmad M H 1992, Response of Cowpea (Vigna unguiculata) to inoculation with (V)AM fungus and Rhizobium strains in field trials. Can. J. Microbiol. 38 573-576.
- Johnny L L 1999, Effects of interactions between arbuscular mycorrhizal fungi and *Rhizobium leguminosarum* on pea and Lentil (Tripartite symbiosis, legumes, *Pisum sativum, Lens esculenta*). Ph.D. thesis. The University of Saskatchwan, Canada. 0780.
- Arumugam R, Rajasekran S and Nagajan S M 2010, Response of Arbuscular mycorrhizal fungi and *Rhizobium* inoculation on growth and chlorophyll content of *Vigna unguiculata* (L) Walp Var. Pusa 151. *J. Appl. Sci. Environ. Manage.* 14 (4). 113-115.
- Ruiz-Lozano J M 2006, Physiological and molecular aspects of osmotic stress alleviation in arbuscular mycorrhizal plants. In: *Handbook of Microbial Biofertrilizers*. (Ed.): MahendraRai, Haworth press, New York. pp: 283-303.
- 30. Mamta N and Tilak K V B R 1987, Response of moong-bean (Vigna radiata var. Aureus) to inoculation with Rhizobium sp. (cowpea misceliany) and Glomus versiforme under varying levels of phosphate. In: Mycorrhizae Round Table proceeding of a National Workshop held at Jawaharlal Nehru Univ., Delhi-India March13-15.
- 31. Jia Y S and Gray V M 2004, Inter-relationships between nitrogen supply and photosynthetic parameters in Vicia faba L. Photosynthetica 41 605-610.