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This review paper highlights the influence of smoke saturated water (SSW) on asymbiotic seed
germination and an early differentiation of protocorrrs and plant regeneration of philidotq paltida
Lindl and vanda parvifl\ra. High percentage germination 

-(85%) 
ina rrigt, percentage oritanttet

recovery (7lo/o) was achieved by culturing seeds on Mitra et a/. basal medium suppGmented wittr
l0% (v/v) SSW. The application of smoke and aqueous smoke extracts to improve seed germination
has been shown in a wide range of plants from many families, ,irrespectiv" of tn"i, fire sensitivity.
Therefore, from the above results it is clear that active 

"orlporrralrj 
within SSwil"; ";.;;;;".yrole in plant development. As all these physiological effects are in part controlled by plant-growth

regulators (PGRS), indications are that the smoke extracts interact in same way *iit'.rao[.ioo.
PGRs' In addition to impacts on germination performance, butenolide appliei as a germination
treatment, has been reported to have positive impacts on seedling growth in orchids.
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Introduction
The increased popularity of orchids has lead to a major
increase in production and sales. With increased popularity
a potential need exists for the introduction of new
commercially valuable orchidsr-r0. Very recently
commercial production and cultivation of native orchid
production have slowly increased. A major obstacle to
native orchid production is the difficulty in seed
germination. Native orchids are produced through seed
germination, but seedling development can be a long
process and flowering plants are oftenproduced only after
3-5 years of growth. Orchid seeds are often named as
'dust seeds'as they are very minute, tiny and contain fdw
food reserves. In nature they may germinate but will not
grow unless infected by a mycorrhizal fungus, which
supplies the young plants with all the sugars and nutrients
they need until the plants are large enough to produce food
on their ownr-ro. Once the seed has germinated it produces
a fairly undifferentiated mass of cells called a protocorm
in orchids. All being well this protocorm will continue to
grow for many weeks, months or even years depending

on species, until large enough to produce leaves and roots.
In case of terrestrial orchids it is vitally important that the
orchid/fungus relationship is maintained during the early
stages ofthe plants life, as the protoconhii subterran6an
and can not produce any food of its'own. In epifhytic
orchids the protoconns are often green, and thus can
produce some food of their ownr-ro. In symbiotic seed
germination, the seeds are sown with a small piece of an
appropriate mycorrhizal fungus. This fungus then grows
over the mediq colonizes the germinating seeds and a
symbiotic relationship is forrned which presumably will
sustain the protocorm until it produces leaves and becomes
autotrophict-to. This technidue is widely usbd for the
propagation oftemperate terreskial orchids. It has the
advantage that media used is very simple (consisting of
only powdered oats with a little yedst extract), and the
resultant mycorrhizal plants are often stronger and more
resistani to fungal infection than some of their
asymbiotically'propagated counterparts. It has the
disadvantages that iou ne-ed the Correct strain of
mycorrhizal fungus, orthe"symbiosis will not develop or
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migF becmre parasitic and the seedlings die. Asymbiotic

gsr-io"tion is commonly used in the propagation of
*pl*t orchids, which tend to be easier to grow than their

tcmperate relatives. The media used for asymiotic

gerrrination is more complex than that for symbiotic

lermination, as all olganic and inorganic nutrients and

Jugars must be in a;iorm readily available to the orchid

without the fungus intermediaryHo.

However, the greatest threat to orchid diversity

is habitat loss; for orchids this may occur on a very small

scale because a single tropical fiee may bear hturdreds of
epiphyic orchid species' The scale of threat to orchid

diversity then reaches frightening proportions ds millions

of hectares of habitat are losi annualiy to ranching;

monocrop agriculture, mining, logging, and urbqn

developmentr-ro. Orchids are badly affected by habitat

destruCtion and their unabated collection. Because orchids

are the most evolved of all flowering plants, they are very

site-specific and need optimum conditions to thrive in a

given ecosystem. If orchids are present in an ecosystem,

this is a good indicator of ahealthy, functioning ecosystem'

Additionally, many orchid flowers and their habitats are

beautiful, and provide pleasure to those who seek out these

unique members ofthe plant kingdomr-ro. Once discovered,

the places where these rare, beautiful plants grow can

become popular sites for naturalists, and photographers'

Obviously, poaching destroys natural populations of
orchids, but other detrimental effects may be less obvious'

Secondly, since orchid habitats are so sensitive, they

typically die several years after being transplanted into a

gA"n. Not only does this kill the individual plant, it also

O"tt oys its chances for reproduction, challenging to $ow
some are relatively easy. Although orchid sales are quickly

rising production and sales ofnative orchids, at best are

slowly increasing. Production of native orchids has not

been firlly commercialized, but is centralized within hobby

growers and small, specialized nurseries' These nurseries

Lry otr t a small selection of showy genera and species'

Conventional vegetative propagation is beset by a slow

multiplication rate, and does not provide sufftcient clones

within a short timefiame. Therefore, it is essential to take

immediate measures for the micropropagation of many

orchids using in vffro culture techniques' Plant tissue

culture methods have played an important role in the

micropropagation of several commercially important

orchids to meet the demands of a growing market

&rughoutfte world. Therefore, there is an urgent need

to develop in vitro propagation protocols for the

oomervation of many native orchid speciesr-ro'

Efea of smoke on in vitro seed germination of orchid-

Smoke has been shown to stimulate germination of
numerous species from a range of fireprone environments

worldwide including Australian kwongan, Californian

chaparral, Western Cape ffnbos, and the Mediterranean

basin. In a survey of 301 SouthAfrican fynbos species, it

was found that 49.8o/o of species, ranging from annual

herbs to geophytes to trees, had a positive germination

response to smoke. Holever, a smoke germination

response is not limited to species from fire-prone
environments as smoke stfrnulates germination in species

such as lettuce, red rice, wild oats and native orchid

germination of Vanda parviflora and Pholidota pallidall '
An increase in percentage germination as well as early

differentiation ofprotocorms into seedlings was observed

on l0% (v/v) SSW-supplemented Mitra et al- basal

medium compared t6 control in Pholidota pallidatt.
Maximum percentage germination (857o) was observed

on l0% (v/v) and seed germination percentage was greatly

inhibited at higher concentrations of SSW (15 and2Oo/)

compared to the control and most seeds turned brown

without germination. Therefore, the presence of SSW at

l0% (v/v) inbasal mediumresulted in faster differentiation

of protocorms to form plantlets (i.e. leaves and roots) than

the controlr. On the other hand, another study related to

orchid seed germination revealed that l0o/o (v/v) SSW-

supplemented basal medium formed plants during
hardening that were normal and showed healthy $owth
with a 907o survival rate, i.e. SSW at l0% (vlv) aids in

rapid regeneration of V parvi/lora|l.
Smoke; Background' It was of interest that a wide range

of sources of plant material produced smoke that

stimulated the germination of T. triandra seeds and Grand

Rapids lettuce seeds. Of particular importance was the

finding that smoke from burned paper, or even an extract

prepared from heated agar or cellulose, could stimulate

the germination of Grand Rapids lettuce seeds. Results

from these studies demonstrated that the germination-

promoting compound(s) were produced from commonly

occurring plant constituentsr2-2o. Prior to the isolation and

identification ofthe active butenolide from smoke, it was

known that the germination cue(s) were water soluble

chemical (s) that were thermostable, long-lasting in

solution, and highly active at very low concentrations2r-22'

Baldwin23 identified 7l compounds in active fractions of
smoke by GC-MS and atomic absorption (AA)
spectrometry, and tested atotal of 233 compounds using

seeds ofNicotiqna attenuafa. None ofthese compounds,

however, promoted germination. In this study, they also

demonstrated that germination activity could be obtained

from smoke produced from burned cellulose and it was
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estimated that less than I pg of the active chemical is study by South African Research group examined the
needed per seed. Thus, the difficulty in isolating the active effects of t*o NO releasing compounds, N_tert_butyl_o-
component(s) from aqueous smokeextracts waspartly due phenylnitrone (pBN) and sodium nitroprusside (SNl), on
to the large number of compounds present in the smoke the germinationbf.Grand Rapids lettuce seeds. In contrast
extract, possibly up to several thousand, and partly due to to smoke application, neither pBN nor SNp stimulated
the very low concentration of the active compound(s) the germinatfon of Grand Rapids lettuce seeds in ,fr. A".t.
relative to the other components present in the smoke. Additionrilly, the NO-specific scavenger 2-(4-
They also demonstrated that ethylene was probably not carboxyphenyl)-4,4,5,5-tetramethylimidazoline-t-oxyt-:-
responsiblefortheobservedgerminationactivity,because oxide potassium (c-pTIO) was unable to reduce the
it is unlikely that it would still be present in the active germination response observed with smoke solutions.
fractions following the various chromatographic These results suggested that NO was unlikely to beprocedures2a'se' reiponsible forthe-e-nhanced germination ofGrand Rapids

South African research group headed by Prof lettuce seeds by smoke soluttns. In another study it was
Johannes van staden conducted chromatographic also confirmed the absence of No2- in aqueous smoke
separation of two different smoke extracts, from burned solutionsderivedfromburnedcelluloseorwood,although
&nbos material or burned Themeda triandra (climax these solutions effectively promoted germination of
grass). One major peak of germination activity, with a Emmenanthe penduliJlora *i lr. afienuqtq. Continued
similar retention time from the non-polar fraction, was effortsatisolatingthecompoundbyboththeSouthAfrican
found in both extacts although; some other fractions also and Australiariresearcir group, ."f-inut"elt" ;;;
had limited positive effects on germination. Germination characterization of a highly a'ctive butenolide compound,
activity was tested using achenes of sytcarpha vestita (a 3- methyl-2H-furotz,:-clpyran-2-one, from plant-derived
fonbos species) and caryopses of I triandra. Similar smoke and burned cettutose respectively. The compound
results were also observed using achenes of Grand Rapids has become commonly referred to as butenolide' in several ..
lettuce. The lettuce seeds, which germinated within 24 h, studies, although strictty speaking this name refers to tleproved to be more suitable for bioactivity-guided type/classofcornpo*4andinaricentarticle,ithasbeen
fractionation than the S. vestita achenes, which required referred to as karrikino6a.'lfentFn il;;.-f;;
20 days or longer showing an optimal responses5-er. that the compound prornot"d-tli" geimination 

"4.;;;Subsequently, South African research group identified seeds over i wide range of co-ncentrations, and at
seven compounds present in both Passer ina vulgoris and concentrations as low as t O" U for Grarrd Rapija&fuce
T. triandra smoke extracts. Four of the compounds seeds, and in the region of l0-7 Mfor Conostyiis acaleata
(available commercially) were tested in the Grand Rapids and Stylidium apni. smittly, it was showei that activity
lettuce seed bioassay at concentrations from 104 to l0'r5 in Grand Rapids lettuce .""d1 fro. lOa M down to l0-eM. However' none were found to be active. M. Further ixperiments by the South African research
Chromatographic separation of these two extracts, using group showed ihat 3-methyl-2H-furo [2,3-c]p]tap-}2-one
thin layer chromatography (TLC), semi-preparative high- could also be formed d*ing Maillard reactions between
performance liquid' chromatography (HPLC), and sugars and amino acids. ne,iting proteins or amino acids
analytical HPLC, indicated that the compound with wiih sugars at l80oc for 30 min produced water-soluble
germination activity was present in the same extracts that promoted the germination of Grand Rapids
fractionsz-ss.Althoughbioactivity-guidedfiactionationled lettuce seeds in the dark. ising HpLC fractionation, itto one major peak of activity, there was some was.demonstrated that the active compound(s) formed
chromatographic evidence indicating that there may be during these reactions co-eluted witli the active fraction
more than one active component in smoke that promotes from the smoke extract. Further analysis using GC-MS
seed germination. Furthermore, chromatographic showed that the active constituent was identical to the
purification of aqueous smoke extracts from ffnbos active compound isolated from plant-derived smoke5s-s.
material andT. triandr4 ag well as a commercial food- Thus, the study ccinfifmbd thaigermination promoting
flavourant, supported the notion of a common active compounds,inctuaingl-methylriH=frro 1Z,S-c1pyrn-i
compound. Prior to the identification of the active one, could indeed ui rormei by heating ubiquitously
compound in smoke, it was also concluded that nitrogen occurring organic compounds. In partiiular, 

-extracts

oxides, and nitric oxide (NO) in smoke were most likely p.epur"d from reactions between d-xylose or dribose
responsibleforstimulatingseedgermination. However, a (aldopentose sugars) with the amino acids arginine,
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asparagine, aspartic acid, glycine, serine' tyrosine or

,ulin., gave the greatest germination response5a-eo' The

butenoiide was tested by Verschaeve for possible

mutagenic and genotoxic effects using the VITOTOX@

test and the Ames assay. Importantly, the results indicated

that the compound is not toxic nor genotoxic at the levels

tested ( I x 104 to 3 x 10-ro M), which raises the possibility

of wide scale usage of the compound as both a germination

stimulant and in a field setting. Following the identification

of the active butenolide from smoke, there have been

several groups who have successfully synthesised the

active butenolide, as well as several analogues68-e2' The

Ausrralian research group, who originally reported the

active compowtd, describedthe synthesis of 3-methyl-2H-

furo [2,3-c]pyran-2-one from pyromeconic acid andthe

preparation and activity of several derivatives' It was also

described that the synthesis ofthe compound, and several

analogous compounds from d-xylose. Interestingly, the

butenolide was found to be a product formed during a

heating reaction between d-xylose and glycine' Two more

recent publications by other research groups also describe

the synthesis of the compound. Butenoiide not only

enhances germination percentage and rate but can also

widen the environmental window over which germination

can occur. Thus, for a range of Australian ephemeral

Asteraceae species, it was reported that, like GAr,

butenolide was able to partially or fully substitute for a

light requirement for germination, as observed with Grand

Rapidsi*tuce seqds. Butenolide at l0-7 M can also affect

the temperature range for germination/seedling
development2?'e2.

Role ancl function of smoke in germinatlon - Butenolide

certainly holdspotential for field-scale use in; for example,

u'eed control and re-vegetation of degraded areas'

Horvever, for effective use in the natural environment, it

is important to know (1) how long butenolide persists in

the soil, (2) natural concentrations in fire-prone

environments, and (3) potential impacts on soil microbes'

Hotvever, these topics have received scant attention' The

only s0rdy to date that has addressed any ofthese issues

investigaied the movement of butenolide down a soil

lrvhite iilica sand) profile following simulated rainfall

events ranging from 4lo 16 mm. Therefore it was found

that application of butenolide, at a ratd equivalent to

I gha, resulted in butenolide, at germination active

colcentrations, moving down the profile to depths ranging

fiom 8.5 to 18.3 cm (following simulated rainfall events

of -1 and 16 mm, respectively)80-er' Thus, butenolide is

mobile in soil and retains bioactiviry, at least in the short-

term. Hoqever, we still know neither the effects of soil

type on the activity of butenolide nor the half-life of
butenolide in soil. Such questions could partly be

addressed using different soil types in the bioassay

approach. However, it would also be of value to determine

airual field level concentrations of butenolide in post-fire

environments and the distribution of butenolide down soil

profiles. The mode of action of smoke, and hence by
-implication 

butenolide, has been ascribed to an interaction

wiitr tire gibberellin pathway in seedseo-'r. For example,

smoke has a similar effect to GA. in substituting for red

light (640 nm) in the stimulation of Grand Rapids lettuce

germination. Similarly, butenolide has been reported to

have similar effects on germination as GA, b-v- both

stimulating germination and substiruting for lig}t in the

germination of Australian Asteraceae. and stimulating

germination in arable weeds. It was reported that a

significant relationship, across the study species, between

the germination response to butenolide and GAr. However,

overall, butenolide was the most effective and did not result

in the elongated internodes that are typically associated

with GAr. Consequently, butenolide is likely to be of
greater vilue than GA, for germination testing on diverse

ipecies since the resuliing seedlings are more likely to be

morphologically'normal'. Other studies have also indicated

that smoke affects endogenous GA synthesis and ABA

content. However, the effect of butenolide on levels of
endogenous plant hormones has not been fully
investigated. While there are clear similarities in the

responses of seeds to butenolide/smoke and GA, there

are few obvious similarities between the chemical

structures of the two compounds. There are, however,

structural similarities between butenolide and the

strigolactones, which stimulate germination in parasitic

plant species such as Orobanche and Strigaa5-e?. Recently,

in another report it was revealed that butenolide can

substitute for strigolactones in stimulating germination of
parasitic weeds (including Striga and Orobanche)

suggesting that butenolide may function in the same way

as strigolactones. This proposition is ftirther supported by

structure-activity relationship studies of strigolactones,

using synthetic analogues of strigol, which have shorT n

that the lactone-enol ether is primarily responsible for the

biological activity of these compounds38-e2. Auxins play

an important role in embryogenesis and seedling

development and are important for'normal' development

in in vitro cultures by providing positional information

for the coordination of correct cellular patteming from

the globular stage onwards. It was found that butenolide

may function in a similar way to auxins being able to

substitute for 2,4-D (a synthetic auxin) in somatic



embryogenesis ofB. tetraphyllum. However, very little is
known about what role auxins play during seed
germination although a relationship between IAA,
dormancy and pre-harvest sprouting of wheat has been
reportedss-eo. Butenolides that are structuially related to
3-methyl-2H-furo [2,3-c]pyran-2-one in Smoke are
produced by a range of microorganisms. For example,
Fusarium sp. produces a 'butenolide' that functions as a
mycotoxin with a mode of action resulting from an impact
on the intracellular redox environment. Since oxidative
stress has been proposed to have a signalling role in
germination, this area may also be worth pursuing in
relation to the role of butenolide in germination2e'e2. Thus,
studies suggest potential similarities between butenolide
and gibberellins, auxin and strigolactones. However, it is
perhaps not surprising that a single molecule can appear
to have analogous properties to a range ofplant growth
regulating compounds since plants have signaling proteins
that can function in several pathways65'er. For example, a
key integrating factor is BIG which is necessary for auxin
transport, cytokinin, GA, ABA, ethylene and
brassinosteroid signaling. To date, however, only one study
has been published which aimed at elucidating the
regulation ofgermination in the presence ofbutenolide at
a molecular level, though additional studies are no doubt
in progress. Recently a sfudy ofdifferential display during
tomato seed germination, reported the up-regulation of
genes encoding expansins in the presence ofbutenolide.
Expansin genes are highly conserved and most have been
proposed to be involved in cell expansion during tissue
growth. They are thought to function by disrupting the
hydrogen bonds between cellulose and hemicellulose
polymers thereby allowing cells to expand. Expansions
have been reported previously in seed germination, playing
a role in both endospenn cap weakening and embryo
growth in tomatoa6'82. Germination is, in essence, cell
expansion and/or elongation culminating in visible radicle
emergence through the testa. If up-regulation of expansins
by butenoiide/ smoke is widespread it also provides a
qrechanism to explain the enh4ncement in seed
germination rate eyen in seedlots that germinate to l00yo
in the absence of butenolide46-er. It was reported that
germination associated expansins in tomato are under the
control of GA, further reinforcing the likely cross-talk
between butenolide and endogenous plant grrwth
regulators. Recent study investigated that the sensitivity
of seven Australian ,4steraceae from non-fire-prone
environments to butenolide and found that it was an
et'fective germination stimulant that could also overcome
the light requiremenl for germination.rr-8:. Thr,.-v- also
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speculated that the release ofbutenolide from soil surface
layers lbllowing disturbance may be a mechanism to
explain this apparent ecological anomaly and the large-
scale emergence of these Asteraceae following soil
disturbance. This premise remains to be tested, however,
and a simpler or partial explanation for germination
following disturbance in these species may be due to short-
term exposure ofthese light sensitive seeds to irradiance.
Another important aspect related to plant growth in natural
or agricultural environments is the presence ofarbuscular
mycorrhizal (AM) fungi which form symbiotic
relationships with plant rootsrs'qo. Such fungi supply the
plant host with nutrients, such as phosphate and obtain
photosynthates from the host plantr6'eo. plant roots secrete
a 'branching factor', which stimulates branching of the
fungal hyphae that penetrate plant roots. Recently the
strigolactone S-deoxy-strigol has been isolated from Zoras
japonicus root exudates and identified as a branching
factor. AM fungal spores can germinate in the absence of
a host, but hyphae exhibit limited branching and
developmentra-87. Strigol and the synthetic stripl analogue
GR24 can also induc-e extensive hyphal branching in
Gigaspora margarita suggesting that parasitic plants find
their hosts by detecting the same chemical sigrals that
AM fungi use for host recognition3s'72. Since butenolide
can also stimulate the germination ofparasitic weeds (i.e.
it can function as a strigolactone analogue) this raises the
question of what impact butenolide may have on the
growth and morphology ofAM fungi if applied as a soil
treatment. For example, would soil application of
butenolide result in stimulation of hyphal growth and
branching in the absence of suitable plant hosts? Such
concerns are further reinforced by the mycotoxic effects
of similar 'butenolides' produced by other microbesa6's.
While the natural occurrence of butenolide in fire-prone
environments may appear to negate these arguments, there
is evidence that fire reduces the levels of AM fungal
colonization of roots, with the mechanisms causing these
negative impacts uncleal2e. However, several knowledge
gaps remain, not least the persistence of buterrolide and
its wider effects in the rhizosphere, before this potential
can be fully realized. Finally, opportunities now present
themselves to elucidate the mode of action ofbutenolide,
whether'butenolides' should be recognized as a new class
of plant $owth regulators and likely cross-talk with
endogenous growth regulators using molecular biology
techniques, such as microarrays and other developing
technologies. As knowledge of the intricacies of seed
germination and plant signalling become better
understood. rve will be able to piece together the
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fundamental mechanisms of this fascinating
phenomenon2e-e2
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