J. Phytol. Res. 19(1): 47-52, 2006

COMBINED EFFECTS OF SOME FERTILIZERS AND PHYTOHORMONES ON NITRATE REDUCTASE ACTIVITY AND SOLUBLE PROTEIN IN THE LEAVES OF GREEN-GRAM [*VIGNA RADIATA* (L.) WILCZEK]

BARNALI DEY and RAMESH C. SRIVASTAVA

Department of Life Sciences, Tripura University, Suryamaninagar Campus, West Tripura-799130, Agartala- India. E-mail : rcsrivastavatu@yahoo.co.in

Field experiments were conducted to study the combined effects of some fertilizers, viz., $(NH_4)_2SO_4$, KH_2PO_4 , KCl and $MgSO_4.7$ H_2O and phytohormones (IAA, GA₃ and kinetin) on nitrate reductase activity and soluble protein in the leaves of green-gram. Foliar spray treatments of each salt or PGRs increased the *in vivo* nitrate reductase (NR) activity as well as the level of soluble protein over the control (water spray). The combined foliar spray of each salt with PGRs (IAA, GA₃ and kinetin) exhibited positive interaction in terms of enzyme activity.

Keywords: Fertilizer & Phytohormones effect; *in vivo*; Nitrate reductase activity; Soluble protein; *Vigna radiata*.

Introduction

Mineral nutrients constitute an important ingredient of intensive farming. Essentially the use of mineral nutrients for achieving high biomass has been reported in many plants by a number of workers¹⁻¹⁰.

Nitrate is the predominant form of inorganic nitrogen available to the plants for their growth and development. Nitrate reductase (NR) is the first enzyme of nitrate assimilation pathway. NR (E.C.1.6.6.1) is a rate limiting and substrate inducible enzyme and its activity is positively correlated with total protein, organic nitrogen content and sometimes overall productivity of plants¹⁷⁻¹². Besides nitrate, other nitrogenous metabolites such as ammonium, amino acids and amides are also known to influence the activity of NR¹³. In higher plants the inducible nature of nitrate reductase has been well established¹⁴. Field response of leguminous plants to inoculation and fertilizer application has been reviewed by Subba Rao¹⁵.

In the recent years the foliar application of plant growth regulators on crop plants have been used to enhanced plant growth, development and yield¹⁶⁻²⁴. Plant growth regulators are known to regulate flowering, fruit setting and fruit development. Appilication of GA₃ promoted or induced flower initiation in many long-day plants²⁵.

In the present investigation combined effects of three non-nitrogenous fertilizers $(KH_2PO_4, KCI and MgSO_4.7 H_2O)$ and a nitrogenous fertilizer (ammonium sulphate) with three plant growth regulators (IAA, GA₃, and KIN) in the form of leaf treatment, were studied on the

in vivo NR activity and soluble protein.

Materials and Methods

Plant growth- Seeds of *Vigna radiata* (L.) Wilczek, cv Cultivated variety K 851 were obtained from National Seeds Corporation, IARI, Pusa, New Delhi. Surface sterilized seeds (with 95% ethanol for 2 min) were thoroughly washed with distilled water and soaked with distilled water for 12 h in an incubator at $30 \pm 2^{\circ}$ C. The soaked seeds were sown in garden soil. After germination the seedlings were thinned out and only 10 seedlings were allowed to grow in each plot of 1m x 1m size.

Foliar application of salts and growth regulators- In all cases optimum concentrations 5 mM for each salt and 10 µg/ml for each PGR were used, as determined by our previous experiments. The trial for combination treatment experiment consisted of ten sets in addition to a control set (water spray). The treatments included-optimum concentration of each salt (T_1) , i.e., 5 mM $(NH_4)_2SO_4$, 5 mM KH,PO₄, 5 mM KCl and 5 mM MgSO₄.7 H,O, optimum concentration of each PGR, i.e., 10 µg/ml IAA (T,), 10 µg/ ml GA₁(T₁) and 10 μ g/ml kinetin (T₄), optimum concentration of each salt + optimum concentration of IAA (T,), optimum concentration of each salt + optimum concentration of GA, (T_{6}) , optimum concentration of each salt + optimum concentration of kinetin (T_7) , optimum concentration of IAA + GA₃ + kinetin (T_8) and optimum concentration of each salt + optimum concentration of IAA + GA, + kinetin (T_{o}) . In each combination the optimum concentration of each salt and PGR was maintained in the final volume. The control plants were sprayed with water. Foliar spray of 48

different combinations of salts and hormones were applied to the 15-day-old plants with the help of a hand sprayer.

In vivo NR activity the *in vivo NR activity* was measured in fresh leaves on zero day, i.e., just before spray treatment and continued at weekly intervals for three weeks in the control and sprayed plants. The NR activity was determined by the method of Hageman and Hucklesby²⁶. *Phosphate-buffer soluble protein*- Soluble protein was estimated in the fresh leaves on zero day, *i.e.*, just before spray and onward up to three weeks at weekly interval by following the method of Lowry *et al.*²⁷. The protein from the fresh tissue was extracted from leaves in phosphatebuffer (0.1 M; pH 7.5). In each case it was precipitated out with equal volume of 10% trichloro acetic acid. Bovine serum albumin was used as a standard.

Results and Discussion

In the present study foliar spray of some fertilizers and phytohormones alone and in combination enhanced the rates of *in viya* NR activity and soluble protein over the control (water spray). Foliar spray of optimum concentration of $(NH_4)_2SO_4$ and each phytohormone (IAA, GA₃ and kinetin) alone and in combination, *viz.*, $(NH_4)_2SO_4$ + IAA, $(NH_4)_2SO_4$ +GA₃, $(NH_4)_2SO_4$ + kinetin, IAA +GA₃ +kinetin and $(NH_4)_2SO_4$ + IAA +GA₃ + kinetin enhanced the rates of NR activity over control (water spray). The most effective combination was found to be 5 mM $(NH_4)_2SO_4$ + 10 µg/ml GA₃ on day 14 after spray. The data is shown in the Fig. 1A.

Foliar spray of optimum concentration of KH_2PO_4 and each phytohormone (IAA, GA₃ and kinetin) alone and in combination, *viz*., KH_2PO_4 + IAA, KH_2PO_4 +GA₃, KH_2PO_4 + kinetin, IAA +GA₃ +kinetin and KH_2PO_4 + IAA +GA₃ + kinetin enhanced the rates of NR activity over control (water spray). With 5 mM KH_2PO_4 the NR activity was higher than any other treatment on the 7th and 14th days after spray. The NR activity was higher on day 21 after spray with each treatment of PGR in combination with KH_2PO_4 . The most effective combination was found to be 5 mM KH_2PO_4 + 10 µg/ml kinetin on day 21 after spray. Nitrate reductase activity was higher with optimum concentration of KH_2PO_4 in combination with hormones than application of KH_2PO_4 alone. The data is shown in the Fig. 1B.

Foliar spray of optimum concentration of KCl and each phytohormone (IAA, GA₃ and kinetin) alone and in combination, *viz.*, KCl+IAA, KCl+GA₃, KCl+kinetin, IAA +GA₃ +kinetin and KCl+IAA +GA₃ + kinetin enhanced the rates of NR activity over control (water spray). The most effective combination was found to be 5 mM KCl+10 μ g/ ml GA₃ on day 7after spray. On day 21 after spray treatment with 5 mM KCl + 10 μ g/ml kinetin was most effective in increasing NR activity. The data is shown in the Fig. 1C. The stimulation of nitrate redutase activity of potassium salts is generally in agreement with the response reported earlier by different workers in a number of plants^{14,28,29}. K^+ ions have been shown to affect nitrate reductase in various ways^{14,30,31}. Sharma and Agarwal³² observed that potassium treatment increased nitrate reductase activity in *Cicer arietinum*.

Foliar spray of optimum concentration of MgSO₄.7 H_2O and each phytohormone (IAA, GA₃ and kinetin) alone and in combination, *viz.*, MgSO₄.7 H_2O + IAA, MgSO₄.7 H_2O +GA₃, MgSO₄.7 H_2O + kinetin, IAA +GA₃ + kinetin and MgSO₄.7 H_2O + IAA +GA₃ + kinetin enhanced the rates of NR activity over control (water spray). The most effective combination was found to be 5 mM MgSO₄.7 H_2O + 10 µg/ml IAA + 10 µg/ml GA₃ + 10 µg/ml kinetin on day 21 after spray. The data is shown in the Fig. 1D.

Singh and Chaudhuri' showed that application of S, along with K and P in the soil, increased the nodulation, podding and pod and haulm yield of groundnut. Pandey and Venu Babu² observed that application of phosphorus @ 60 kg P_2O_5 /ha increased the activity of NR and GDH while lower dose (30 kg P_2O_5 /ha) was most favourable for GS activity. Phosphorus @ 80 kg P_2O_5 /ha decreased the enzyme activity. Magnesium is essential to the plants because of its presence in the chlorophyll. Mg²⁺ also activates many enzymatic reactions that involve ATP such as photosynthesis, respiration and formation of DNA and RNA³³.

Nitrogen is a very important nutrient element in agriculture. In soil it occurs in organic and inorganic forms". Within the integrated multiple cropping system nitrogen is the most common limiting nutrient needed to increase agricultural production. This nutrient can be obtained at high cost from commercial fertilizers or through biological nitrogen fixation by leguminous plants. Foliar spray of optimum concentration of (NH₄), SO₄ and each phytohormone (IAA, GA, and kinetin) alone and in combination, viz., $(NH_4)_2SO_4 + IAA$, $(NH_4)_2SO_4 + GA_3$, $(NH_4)_2SO_4$ + kinetin, IAA +GA₃ + kinetin and $(NH_4)_2SO_4$ + IAA +GA, + kinetin enhanced the level of soluble protein over control (water spray). The level of soluble protein was higher on day 7 after spray with treatment of each PGR in combination with 5 mM $(NH_4)_2SO_4$. However, the most effective combination was found to be 5 mM(NH), SO₄+ 10 µg/ml GA, on day 14 after spray. On day 21 after spray maximum level of soluble protein was obtained in the combination containing mixture of each PGR. The data is shown in the Fig. 2A.

Foliar spray of optimum concentration of KH_2PO_4 and each phytohormone (IAA, GA₃ and kinetin) alone and in combination, *viz.*, KH_2PO_4 + IAA, KH_2PO_4 +GA₃, KH_2PO_4 + kinetin, IAA +GA₃ +kinetin and KH_2PO_4 + IAA +GA₃ + kinetin enhanced the level of soluble protein over

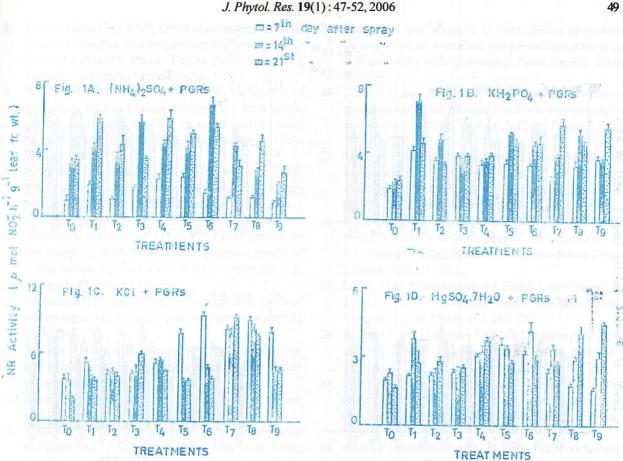
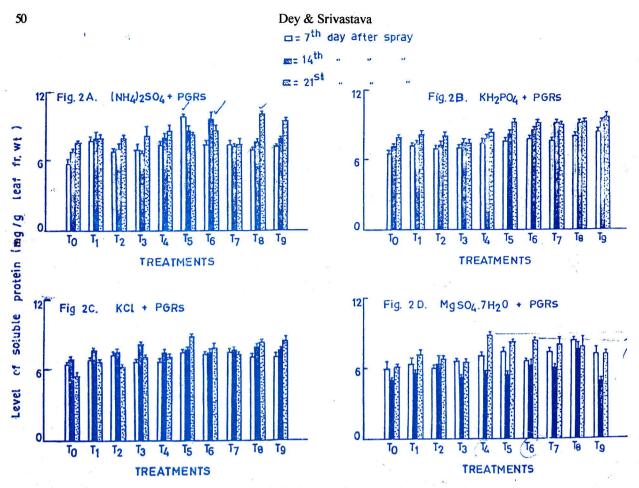


Fig. 1. In vivo nitrate reductase (NR) activity on different days in the leaves of Vigna radiata sprayed with optimum concentration (5 mM) of each salt or each PGR (10 μ g/ml) and their various combinations. T₀ = control, T₁ = each salt (5 mM), $T_2 = IAA (10 \ \mu g/ml), T_3 = GA_3 (10 \ \mu g/ml), T_4 = kinetin (10 \ \mu g/ml), T_5 = T_1 + T_2, T_6 = T_1 + T_3, T_7 = T_1 + T_4, T_8 = T_1 + T_2, T_6 = T_1 + T_3, T_7 = T_1 + T_4, T_8 = T_1 + T_2, T_8 = T_1 + T_2, T_8 = T_1 + T_3, T_7 = T_1 + T_4, T_8 = T_1 + T_2, T_8 = T_1 + T_2, T_8 = T_1 + T_2, T_8 = T_1 + T_3, T_7 = T_1 + T_4, T_8 = T_1 + T_2, T_8 = T_1 + T_2, T_8 = T_1 + T_2, T_8 = T_1 + T_3, T_7 = T_1 + T_4, T_8 = T_1 + T_2, T_8 = T_1 + T_3, T_7 = T_1 + T_4, T_8 = T_1 + T_2, T_8 = T_1 + T_3, T_7 = T_1 + T_4, T_8 = T_1 + T_2, T_8 = T_1 + T_3, T_8 = T_1 + T_4, T_8 = T_1 + T_2, T_8 = T_1 + T_3, T_8 = T_1 + T_4, T_8 = T_1 + T_2, T_8 = T_1 + T_3, T_8 = T_1 + T_4, T_8 = T_1 + T_2, T_1 + T_2, T_2 = T_1 + T_2, T_2 = T_2, T_2 = T_2, T_2 = T_2, T_2$ $T_{2}+T_{3}+T_{4}, T_{0}=T_{1}+T_{2}+T_{3}+T_{4}.$

control (water spray). The level of soluble protein was higher on all days with treatments of each PGR in combination with 5 mM KH₂PO₄. The most effective combination was found to be 5 mM KH_2PO_4 + 10 µg/ml IAA + 10 μ g/ml + GA₃ + 10 μ g/ml kinetin on day 7, 14 and 21 after spray (Fig. 2B).


Foliar spray of optimum concentration of KCl and each phytohormone (IAA, GA, and kinetin) alone and in combination, viz., KCl+IAA, KCl+GA,, KCl+kinetin, IAA +GA, +kinetin and KCl+IAA +GA, +kinetin enhanced the level of soluble protein over control (water spray). The level of soluble protein was higher on all days with treatment of each PGR in combination with 5 mM KCl. The most effective combination was found to be 5 mM KCl+10 µg/ml IAA on day 7, 14 and 21 after spray. The data is shown in the Fig. 2 C.

Foliar spray of optimum concentration of MgSO₄.7 H,O and each phytohormone (IAA, GA, and kinetin) alone

and in combination, viz., MgSO₄.7 H₂O + IAA, MgSO₄.7 H₂O+GA₂, MgSO₄.7 H₂O+ kinetin, IAA +GA₂ +kinetin and $MgSO_4.7 H_0 + IAA + GA_3 + kinetin enhanced the level of$ soluble protein over control (water spray). The most effective combination was found to be 5 mM MgSO, 7 H,O + 10 µg/ml GA, on day 21 after spray. The data is shown in the Fig. 2 D.

A number of workers studied the effect of different plant growth substances, viz., IAA, GA,, KIN, NAA, 6benzylamino-purine (BAP), Coumarin (COU), malic hydrazine (MH), 2,3,5-triiodobenzoic acid (TIBA) and CCC on growth and nodule development of leguminous plants such as Pisum sativum, Physalis peruviana, P. angulata and Vicia faba³⁵⁻³⁷. Premabatidevi³⁸ observed increase in the activity of in vivo nitrate reductase and nitrite reductase in the leaves of a tree legume-Parkia javanika with spray of IAA, GA, and KIN.

Further, it was noticed that the level of soluble

Fig. 2. Level of soluble protein on different days in the leaves of *Vigna radiata* sprayed with optimum concentration (5 mM) of each salt or each PGR (10 µg/ml) and their various combinations. $T_0 = \text{control}$, $T_1 = \text{each salt}$ (5 mM), $T_2 = IAA$ (10 µg/ml), $T_3 = GA_3$ (10 µg/ml), $T_4 = \text{kinetin}$ (10 µg/ml), $T_5 = T_1 + T_2$, $T_6 = T_1 + T_3$, $T_7 = T_1 + T_4$, $T_8 = T_2 + T_3 + T_4$, $T_9 = T_1 + T_2 + T_3 + T_4$.

protein was higher in those tretment sets where NR was also higher and vice versa. Thus, in vivo NR can be taken as an index of higher soluble protein level in the greengram leaves. In this regard Johnson *et al.*³⁹ suggested that NR is a parameter ultimately determines yield or leaf biomass. Therefore, it is expected that the treatments that increased NR activity also enhance the crop yield.

References

- 1. Srivastava R C and Mathur S N 1980, Role of potassium dihydrogen orthophosphate in antagonizing the inhibition of nodulation and nitrogenase activity by ammonium nitrate in *Vigna mungoz*. *Natl. Acad. Sci.Lett.* **3(3)** 75-77.
- Pandey M and Venu Babu P 1988, Activity of NR, GDH and GS in relation to phosphorus fertilization and growth stages in chick-pea. *Indian J. Plant Physiol.* 31(3) 276-280.
- 3. Lakhmi P and Narayanan A 1988, Effects of phosphorus

deficiency on root growth, phytomass production and nutrient content of groundnut horsegram and sesame. *Plant Physiol. and Biochem.* **15(1)** 116-122.

- Srivastava R C 1981, Effects of some nitrogenous and non-nitrogenous fertilizers on nitrogen metabolism of *Phaseolus mungo* L. Ph. D. Thesis (Botany), University of Gorakhpur. India.
- 5. Singh P N and Ram H 1992, Effect of phosphorus and sulphur on concentration and uptake of N, Ca and Mg in chick-pea. *Indian J. Plant Physiol.* **35(2)** 109-113.
- Pandey M 1996, Effect of photosynthate availability on N₂-fixation in soybean nodules. *Indian J. Plant Physiol.* 1(1) NS 18-20.
- Singh A L and Chaudhuri V 1996, Interaction of sulphur, phosphorus and potassium in groundnut nutrition in calcareous soil. *Indian J. Plant Physiol.* 1(1) NS 21-27.

- 8. Premabatidevi R K 1997, Effect of some fertilizers and growth hormones on nitrogen metabolism of *Parkia javanika* (Merr.). Ph.D. Thesis (Life Sciences), Manipur University, Imphal, India.
- Singh S, Dutt O and Singh S 1997, Utilization of phosphate by pea (*Pisum sativum* L.) from single super phosphate applied in combination with inorganic and organic materials. *Indian J. Plant Physiol.* 2(1) 90-92.
- Srivastava T K, Ahlawat I P S and Panwar J D S 1998, Effect of phosphorus, molybdenum and biofertilizers on productivity of pea (*Pisum sativum* L.). *Indian J. Plant Physiol.* 3(3) NS 237-239.
- Mishra S N and Srivastava H S 1993, Increase in nitrate reductase activity, nitrogen and protein content of maize leaves supplied with nitrate or ammonium. Z. *Pflanzen. Physiol.* 113 91-93.
- Srivastava H S 1992, Multiple functions and forms of nitrate reductase in higher plants. *Phytochemistry* 31 2941-2947.
- Srivastava H S and Shankar N 1996, Molicular biology and biotechnology of nitrate reductase in higher plants. *Curr. Sci.* 71 702-709.
- Hewitt E J 1975, Assimilatory nitrate reduction. Ann. Rev. Plant Physiol. 2B 73-100.
- Subba Rao N S 1976, In: Symbiotic Nitrogen Fixation in Plants. (Ed.) P.S. Nutman, Cambridge Univ. Press, London., pp. 255.
- Audus L J 1972, Plant Growth Substances. 3rd Edn. Vol. 1. Plant Sciences Monographs, Leonard Hill, London.
- 17. Murashige T 1974, Plant propagation through tissue culture. *Annu. Rev. Plant Physiol.* **25**135-166.
- Sachar R C, Taneja S R and Sachar K 1975, Recent development in the mechanism of action of plant growth substances. J. Scientific and Industrial Res. 34(12) 679-719.
- Pandey V N and Singh B B 1991, Nitrate reductase in relation to grain yield in lentil. *Indian J. Plant Physiol.* 34196-197.
- Garg N, Garg O P and Dua I S 1992, Effects of gibberellic acid and kinetin on nodulation and nitrogen fixation in chick-pea (*Cicer arietinum* L.). *Indian J. plant Physiol.* 35(4) 401-404.
- Saha S 1992, Cytokinin activity during seed germination in pea (*Pisum sativum* L.). Indian J. Plant Physiol. 35(3) 278-280.
- 22. Garg N, Dua I S and Sharma S K 1995, Nitrogen fixing ability and its dependence on the availability of cytokinins in soybean and chick-pea growing under saline conditions. *Plant Physiol. and Boichem.* 22(1) 12-16.

- 23. Zaidi P H and Singh B B 1995, Effect of growth regulators on IAA-oxidase and peroxidase activity in soybean under salinity. *Indian J. Plant Physiol.* **38(4)** 337-339.
- Zaidi P H and Singh B B 1998, Growth-regulatorsmediated biological nitrogen fixation in soybean under salt stress condition. *Indian J. Plant Physiol.* 3(3) NS 210-213.
- Metzger J D 1990, Gibberellins and flower initiation in herbaceous angiosperms. In: *Plant Growth Substances*. 1988. (Pharis, R.P. and Rood, S.B., Eds.). pp. 476-489. Springer-Verlag, Berlin.
- Hageman R H and Hucklesby D P 1971, Nitrate reductase from higher plants. In: *Methods in Enzymology.* (Ed.) A. San Pietro, Academic Press London. 23A 491-503.
- Lowry O H, Rosenbrough N J, Farr A L and Randall R J 1951, Protein measurement with the Folin-Phenol Reagent. J. Biol. Chem. 193 265-275.
- Beevers L and Hageman R H 1962, Nitrate reduction in higher plants. Ann. Rev. Plant Physiol. 206 495-522.
- Hewitt E J, Hucklesby D P and Notton B A 1976, Nitrate metabolism. In : Bonner, J. and Varner, J.E., (Eds.) *Plant Biochemistry*. 3rd (Ed.) Academic Press, London. pp663-681.
- Hewitt E J and Nicholas D J D 1964, Nitrate reduction in higher plants. In: Linskens, H.F., Sanwal, B.D. and Tracey, M. V., (Eds.) Modern Methods of Plant Analysis. Vol.7. Springer-Verlag, Berlin, pp 67-172.
- 31. Dilworth M J 1974, Dinitrogen fixation. *Annu. Rev. Plant Physiol.* **25** 81-114.
- Sharma G L and Agarwal R M 2002, Potassium induces the changes in nitrate reductase activity in *Cicer* arietinum L. Indian J. Plant Physiol. 7(3) NS 221-226.
- Salisbury F B and Ross C W 1995, In: *Plant Physiology*. F.B. Salisbury and C. W. Ross (Eds.). Wadsworth Publishing Company, U.S.A. pp. 108-109.
- Prakasha Rao, E V S and Puttana K 2000, Nitrates, agriculture and environment. *Curr. Sci.* 79(9) 1163-1168.
- 35. Banergi M and Chatterjee A 1988, Effect of growth regulators on *in vitro* growth and cytology of *Vicia faba. J. Indian Bot. Soc.* 67 239-242.
- 36. Raghava R P and Murry Y S 1988, Effect of growth regulators on fresh and dry weight of plant parts in *Physalis peruviana* and *P. angulata. J. Indian Bot. Soc.* 67 322-324.
- Sharma R K, Sharma N T and Tiagi B 1989, Effect of foliar applications of growth regulators on pea plants infected by *Meloidogyne incognita*. J. Indian Bot.

Secol. 36

52

1 2 2

181

intern.

Dey & Srivastava

Soc. 68 84-86.

38. Premabatidevi R K 1998, Effect of IAA, GA, and kinetin on nitrate reductase and nitrite reductase in the leaves of a tree legume (*Parkia javanica* Merr.). *Indian J*.

The light man and the first floor Paneton 106 493.

Nucleis metabolisms in Bonner I. and Mitner J.E.

Dilworth M. J. 1974, Dintrogen fration, Acats 52

the changes in nitrate reductase derivity in Clear

Plant Physiol. 3(2) NS 97-101.

39. Johnson CB, Whittington WJ and Blackwood GC 1976, Nitrate reductase as a possible predictive test for crop yield. *Nature* **262** 133-134.

 Smaanval I. Ahowati P. and Parwar J D S 1998. Effect of theophoness molybehrum and the femilizers on productivity of post (Cristm network 1). Indian J. Plant Parison 94(2):0022-11239
Mishin S. Vand Srivestava H S 1993, Increase in nitrate reductase activity introgen and protein content of Planzen, Physiol. 113-91-93.
Srivastava H S 1992, Withighe functions and forms of nitrate reductase in higher plants. Phytochemicsry 31 (2) Srivastava H S 2002 Withighe functions and forms of nitrate reductase in higher plants. Phytochemicsry 31 (2) Srivastava H S and Shadtar. NJ 996, Nolimitar biology genus Coard Sel 70702-709.
Srivastava H S and Shadtar. NJ 996, Nolimitar biology genus Coard Sel 70702-709.
Hawati E. 1975, Assumation y natraterestection. Am. Her Heneffin and 28-1100.
State Rad M 1997, Introvident Controloge Univ. Press. Int Plants. Led. 25. Nutman, Cambridge Univ. Press. Int Plants. Led. 25. Nutman, Cambridge Univ. Press. Int Plants. Led. 25. Nutman, Cambridge Univ. Press. London. pp. 23. State Rad Manuferey M substances of dia. London. pp. 23. State Plants (Sentrates Monegraphic, Ledunated Manu Vet, Laffach Sentrates Monegraphic, Ledunated Manufella.

[London: 1 J. [1] T. T. F. F. T. [1] T. T. Wurashige T 1974. Plant propagation through tissue culture. Annu. Rev. Plant Physiol. 25135-166.

Sachar R.C. Taneia S.R and Sachar K 1975, Recent development in the mechanism of action of blant growth substances. J. Scientific and Independences 34(23)79716

(9) Tat dev V Mand Singh B J 991 Militate reductase in relation to grain vield in tentil, Indian J Plan Physiol. Market 97.

 Garg N, Garg O P and Dua I S [1992] Libers of piberelin acid and kinetin on nodulation and uit open fixation in entre-pea (Clifter arietitism 1.). Indical J. plant Physici. 25(4):401-404.

21. Saha S. 1992. Cytokinin activity suring seed (Production in pest (Production C.), Product, Plant and Sciences of Sciences (Production C.), Product, Plant and Sciences (Production C.), Product, Plant

22 Gary N. Dua I S and Shamia S X 1995. Mitrogen fixing ability and its dependence on the availability of coroldmite a softwar and chick-pea growing inder saline conditions. *Plant Physics and Balchew* 72(1).

An interference of and the winners (100 100 and 100 a

foliar applications of growth regulaters on pears and