INCIDENCE AND HISTOPATHOLOGY OF ALTERNARIA ALTERNATA IN SUNFLOWER SEEDS

SHAILESH GODIKA, KAILASH AGRAWAL* and TRIBHUWAN SINGH

Department of Botany, University of Rajasthan, Jaipur-302 004, India *Department of Botany, Agrawal College, Jaipur-302003, India

One hundred eighty eight seed samples of sunflower (*Helianthus annuus L*) revealed asymptomatic and symptomatic (bold-discoloured and shrivelled-discoloured) seeds. Seeds with greyish brown and brown to black discolourations yielded *Alternaria alternata*. The fungus was recorded in 133 seed samples with an incidence range of 1-98%. The pathogen was located in pericarp of asymptomatic seeds whereas, in pericarp, endosperm and embryo of bold-discoloured and shrivelled-discoloured seeds. The mycelium was inter- and intracellular. Seeds with severe infection showed a heavy aggregation of mycelium in the inner layers of the pericarp, space between endosperm and embryo and cells of cotyledons and shoot apex.

Keywords: Alternaria alternata; Histopathology; Incidence; Seeds, Sunflower.

Introduction

The frequent occurrence of Alternaria alternata, internally in cereal seeds is well documented¹⁻³. In oilseeds it has been recorded in linseed⁴, rape and mustard^{5,6} and taramira⁷. A. alternata causes leaf spot in sunflower⁸⁻¹⁰. During routine seed health testing of samples collected from Rajasthan, it was found to occur in large number of seed samples of sunflower; therefore, a study of its incidence in seed lots and location in seeds was made. Materials and Methods

One hundred eighty eight seed samples collected from 11 districts of Rajasthan during 1992-94 were tested by dry seed examination and blotter test¹¹ to study the incidence of *Alternaria alternata*. Location of *A. alternata* was studied in two naturally infected seed samples (ac. nos. 8504 and 8512) carrying 85% and 89% incidence respectively, using methods of component plating, clearing and wholemount preparations and microtome sectioning¹².

Results and Discussion

Incidence in seed samples : Seed samples of sunflower on dry seed examination revealed

bold-symptomless, bold-discoloured and shrivelled-discoloured type seeds (Fig.1). Seeds with greyish-brown and brown to black discolourations on incubation yielded growth of *Alternaria alternata*. In blotter test, 43 fungi of 23 genera were isolated from seeds of which *A. alternata* was recorded in 133 seed samples with incidence range of 1-95% in untreated seeds and 1-98% in pretreated seeds. Samples from Jhalawar, Jaipur, Kota, Baran and Bhilwara revealed relatively high infection percentages.

The heavy infestation of seed samples (70.74%) with *A. alternata* (1-98%) from 11 districts suggests its widespread occurrence in Rajasthan. By producing discolourations on surface it affects the seed quality adversely. Similar observations have also been reported in rape and mustard^{5,6}, coriander¹³ and sunflower¹⁴.

Histopathology of A. alternata infected seeds: In component plating, growth of A. alternata (Fig.2) was recorded on outer- and inner pericarps in bold-symptomless seeds whereas in outer- and inner pericarps, endosperm and embryo in bold-discoloured and

wholemoule preparate						
SEED COMPONENTS	SEED CATEGORIES					
	Ac.no.8504				Ac.no.8512	
	BS	BD	SD	BS	BD	SD
COMPONENT PLATING:	estatio concel.	11:0 - 20 - 2 - ²	gan e - kez-e a	dyn ordefni	(Jae harden	
Seed coat Outer pericarp Inner pericarp	22 12 00	70 66 50	100 100 78	10 10 00	62 52 40	100 100 74
Embryo Cotyledons Embryal axis	00 00	36 16	60 24	00 00	28 16	40 26
II. CLEARED AND WHOLEMOUNT PF	REPARATION	(S :		10	40	100
Seed coal Outer pericarp Inner pericarp	14 10	60 56 36	100 100 68	10 10 00	40 38 24	100 100 72
Endosperm Embryo Cotyledons	00 00	20 10	30 18	00 00	18 10	28 18

Table 1. Percentage infection of A. alternata in different parts of seeds of sunflower in component plating and cleared 1 _____

BS = Bold-symptomless; BD = Bold-discoloured; SD = Shrivelled-discoloured

shrivelled-discoloured seeds in both the samples (Table 1).

Cleared wholemount preparations revealed thick, dark, branched and septate mycelium of A. alternata in outer pericarp (Fig.3) and inner pericarp in boldsymptomless seeds whereas in outer and inner (Fig.4) pericarps, endosperm layer (Fig.5) and embryo (Fig. 6) of bolddiscoloured and shrivelled-discoloured seeds in both the samples (Table 1). Conidia of A. alternata were also observed in seed coat of some seeds.

Microtome sections showed mycelium of the pathogen in outer and inner pericarps of all the seed categories (Fig. 7 & 11). In 3 out of 10 bold-discoloured seeds, mycelium penetrated the cuticle and formed small compact knots or cushions in the inner pericarp more abundantly at the hilar end. The cuticle was relatively thin and sinuate with gaps at places. Abundant mycelium was observed in space between endosperm and embryo, between the cotyledons and cells of cotyledons and shoot apex (Fig. 8-10) in severely infected seeds. Thus, A. alternata in sunflower seeds was found to be extra as well as intraembryal in nature. Similar observations were also made by Singh et al.⁸, Raut¹⁵, Kaur et al.¹⁶ and Krishnappa and Shetty.17 Its mycelium in seed coat, endosperm and embryo in infected chilli seeds has also been reported from Rajasthan. In shrivelled- discoloured seeds the parenchyma, aleurone and endosperm layers were completely disintegrated and replaced by mycelium. The embryo was greatly reduced and the cells showed complete depletion of contents.

The presence of mycelium of A. alternata in seeds of sunflower in outer- and

118

Fig. 1-6: Infection of Alternaria alternata in sunflower seeds; Fig.1. Seed Categories (left to right) bold-symptomless, bold-discoloured and shrivelled-discoloured seeds. Note greyish brown and brown to black discolouration on seed of later two categories. x 20; Fig. 2. Chain of coindia of fungus on seed surface, x 50; Figs. 3-6. Seed components showing thick, dark, septate, inter- and intra cellular mycelium in cleared wholemount preparations. (3) outer pericarp (4) inner pericarp (5) endosperm and (6) cotyledon. x 125.

Fig. 7-10: Histopathology of infected seeds; Fig. 7. mycelium in seed coat layers. x 25; Fig.8. inter - and intra cellular mycelium in the cotyledonary tissue. x125; Fig. 9. abundant mycelium in space between endosperm and embryo. x 125; Fig. 10. heavy colonization of shoot apex and space between the cotyledons. x 125.

Fig. 11: Semidiagrammatic representation of section of categorised seeds showing expanse of mycelium of Alternaria alternata in sunflower.

- A. Bold- symptomless seed
- B. Bold- discoloured seed
- C. Shrivelled- discoloured seed

(Cot. - Cotyledon; end. - endosperm; hra - hypocotyledonary root axis; ipc - iner pericarp; my- mycelium; opc - outer pericarp; sa - shoot apex; t - testa)

inner pericarp layers of seed coat in boldsymptomless seeds suggests that the pathogen penetrate seed through epidermis mainly towards hilum. The mycelium either remained confined to the layers of seed coat or spread into other tissues in favourable conditions.

Acknowledgements

Thanks are due to Department of Science and Technology, Government of India, New Delhi for sanctioning young scientist research project (KA) and to Head, Department of Botany, University of Rajasthan, Jaipur for providing research facilities.

References

- 1. Hyde MB and Galleymore HB 1951, Ann. App. Bio. 37 179
- 2. Jrgensen J 1969, Friesia 9 97
- 3. Agrawal K., Sharma J, Singh T and Singh D 1987, Bot. Bull. Acad. Sinica, 28 123
- Kumar K, Garg SK and Saksena HK 1985, Indian Phytopath. 38 162

- Sharma J, Agrawal K and Singh D 1993, J. Ind. bot. Soc. 72 242
- 6. Sharma J, Agrawal K and Singh D 1994, Acta Botanica Indica 22 (1) 109
- Sharma N 1992, Seed-borne diseases of Eruca sativa Mill and Linum usitatissimum L. grown in Rajasthan Ph. D. Thesis, University of Rajashan, Jaipur.
- Singh D, Mathur SB and Neergaard 1977, Seed Sci. & Technol. 5 579
- Chandra S. Narang M and Srivastava RK 1985, Seed Sci. & Technol. 13 537
- 10. Tosi L and Zezzerini A 1991, Informetore Fitopatologico 41 (4) 54
- 11. Anonymous 1976, Seed Sci. & Technol. 3 49, 50
- 12. Singh D 1983, Seed Sci. & Technol. 11 651
- Singh BK 1991, Studies on seed-borne mycoflora of some umbelliferous species with special reference to Rajasthan Ph. D Thesis, University of Rajasthan, Jaipur.
- 14. Shtienberg D 1994, Plant Disease 78 (11) 1112
- 15. Raut JG 1985, Indian Phytopath. 38 (3) 522
- 16. Kaur J. Chahal SS and Aulakh KS 1990, *Pl. Dis. Res.* 5 (1) 53
- 17. Krishnappa M and Shetty MS 1990, *Pl. Dis. Res.* 5 (2) 203

فالالبلاج والمعدجات المتاتلة جريادي

 Chitkara S, Singh T and Singh D 1986, Biol.Bull. of India 8 (1) 18