I. Phytol. Res. 23(2): 267-270, 2010

INCIDENCE OF KERATINOPHYLIC FUNGI AND OTHER RELATED FUNGI FROM SELECTED SOIL SAMPLES OF PAOTA, RAJASTHAN

MEENAKSHI SHARMA and SARITA SHARMA

Mycology and Microbiology Laboratory, Department of Botany, University of Rajasthan, Jaipur-302004, India. E-mail: saritasharma21@gmail.com

One hundred ten soil sample were collected from various area of paota, Jaipur district of Rajasthan and screened for prevalence of keratinophilic fungi and related dermatophytes. From the positive samples (62.72%), a total of seven genera with eighteen species were isolated. Among the dermatophytes and other related species, Chrysosporium indicum was predominant followed by Microsporum gypseum, Trichophyton rubrum, T.mentagrophyte, C.tropicum, T.tonsurans, Epidermophyton floccosum, M.fulvum, and T.schoenleinii. Other species were Aspergillus flavus, A.niger, A.terreus, A.fumigatus, Fusarium oxysporum, F.chlamydosporum, F.verticillioides, F.solani and Penicillium sp. Most of the species isolated are khown to be the agents of human and animal infections.

Keywords: Dermatophytes; Keratin; Keratinophilic fungi; Soil fungi.

antraduction

Timughout the world, great interest is shown by research withers in soil mycoflora that can degrade keratinized midue. This is due to two factors, the extreme resistance mileratin to biological attack and the pathogenic potential ment keratinolytic saprophytic species¹. Soils that are in keratinous material are most conducive for the and occurrence of keratinophilic fungi². Despite me majority of dermatophytes can live saprophytically, must keratinophilic fungi have pathogenic potential³. In india, open school play grounds, public parks, public makes are often invaded by animals such as cow, bullock, med, dog, pig, cat and rat. These transient animals leave manic residues, which may contaminate the soil with meratinaceous debris and possibly propagules of meratinophilic fungi including fungal pathogens. Therefore, soil can become a potential source of infection burnan beings4. Keratinophilic fungi are likely to be important ecologically, especially in regions where human and animal populations are high. Filipello⁵ reported that suils rich in keratinous residue constitute a permanent or accasional reservoir for dermatophytes as well as mentinolytic and keratinophilic fungi. These fungi are putential agents of infection in human beings and animals. Material and Methods

samples were collected from various area of Paota, hipur district and screened for prevalence of terratinophilic fungi and other related fungi. The samples

were placed in sterile polyethylene bags, brought to the laboratory and used immediately or stored overnight at 4ºC. Twenty grams of soil from each sample were-placed in sterlized 9 cm diameter Petri dishes. Five replicate samples were processed. Autoclaved human hairs were used to bait keratinophilic fungi by scattering of the hairs on the soil surface. The plates were then moistened with an antibiotic solution containing cycloheximide (0.5 mg/ ml), chloramphenicol (0.05 mg/ml) and streptopenicillin (1000 IU/ml). The plates were then incubated at room temperature for a period of 2 months and were remoistened with sterile deionized water whenever necessary. Once every week baits were selected at random from each Petri dish, transferred to plates containing Sabouraud dextrose agar medium with cycloheximide(0.5 mg/ml) and chloramphenicol (0.05 mg/ml) then incubated at room temperature for a period of 2 weeks. The developed colonies were examined and identified by standard mycology manuals^{6,7}.

Results and **Discussion**

Keratinophilic fungi are important ecologically and recently have attracted the attention throughout the world. They play a significant role in the natural degradation of keratinized residues⁸, have many properties in common with dermatophytes and some can probably cause human and animal infections^{9,10}. Keratinophilic fungi are presented in the environment with variable distribution patterns that depend on different factors, such as human

Flored Rex 23(2): 267-270, 2010

Source of Soil Sample	Road Side	Garden	Garbage	Poutlry Farm	Cattle Farm	School Play Ground	House dust	Hospital s	School Hostel	Total	Distri- bution %
No. of Sample Examined	20	. 10	10	10	10	10	15	15	10	110	
No. of Positive Samples	12	5	6	7	7	6	9	11	. 6	69	
Distribution %	60%	50%	60%	70%	70%	60%	60%	73.34%	60%	62.72	%
Dermatophytes and R	elated	Species	antrixtee	s, Chys	ed specie hotharto	nder ich sout ien					
Microsporum gypseum	2	ogi canad Odiez sp	ine l'est	ar pas	ana fui	a muntan	1001	1	1	8	11.59%
M. fulvum	rim, F Hoj-s :	in se or i	nan Long an Elizar	pontest.	arasa s gipdhi s	di 1dheo	M in a	Periotitia	baa -	2	2.89%
Trichophyton rubrum	utis i <u>s</u> i	1 ^{1 1}	iver 1+0	nets _	· 1 ⁰⁰	gart <u>a</u> aa atsaa is	2	2	n kalenen	7	10.14%
T. mentagrophytes	0.1	gniñ Hoð 1	'Anna Anna Anna Anna Anna Anna Anna Anna	čejči (19675) 1	A minero .1		1	1	1	7	10.14%
T. tonsurans	nal e <mark>l</mark> 15	ylen olha	te ni legosl	q anow	15 सम् न्हिल्	troa (Las	oportein portein	ofoto-1 da	nis in in Managema	3	4.34%
T. schoenleinii	ofietello eb_creoi	antani Ber Maseka zi	in bas gan inag sinak	ACO ⁴	Acressie Acressie	etsi -shi		o san Indi	ngayar bi	2	2.89%
Epidermophyton floccosum	t Petri, ofecto	i diamiti i Natarahi	ing store (m	hate at oldeane	entere Internet	od aj <mark>e</mark> oßi 1912 auge	ave our , sdarlod	engang ang Ibre A h tes	ica onte e legite to	3	4.34%
Chrysosporium indicum	rd ignii 1 - 1 - 1	i pilidojin sig edit so	henai kerek adros ker	oà bertu (still ,2)	iati aroj i brij l ite	Ballo⊠. Feeridida	enidados 1900 1 900	anti ephysia ged l i are p	ens s t or	9	13.04%
C. tropicum	o gnini Inisin	ion conta icol (0.05	nios sitek minina	en antil do "(i h r	espile (<mark>1</mark>)	i ignst _{Cic} lai	ophilio configues	e 65 keeptin natelphytes	x strene ly of den	7	10.14%
Other fungi	di Sisi di Sisi ditanasi	r psibiq el Occhana	(Urad). The	(1009) Northan		o potenti Darka	itregeda al fan a	ng <mark>avad</mark> kya aya groupada	at gilida Ig Jooda		
Aspergillus flavus		ine besi	nojoše blim e oticel deco	n vitiva v vitiva	illock, Joave	ni ana a domina i	n doue el Insieren	d by enimal rat These	obovní a tem teo.	2	2.89%
A. niger		na sa ining () Na sa ining ()	a benefase	dista (s	thind You see		danimas n vidu	oog gana di aan ista a	ideo svitik Indeb, si	. 2	2.89%
A. terreus	en con els G <u>r</u> eb	gar 2 <u>0</u> .0)	anning Tooluadus	hmohto	gons.	adi <u>se</u> di		eibel pi i	300 ¹ 0	2	2.89%
A. fumigatus	ya 5.30 bi ban	pound : pound :	na turin la la la La curin la la la la	cologie igologie	, as use od_ot	na to w (todil_on	a ignui :	silidoo <u>d</u> isa idalaharaha	ngs", Ke	3	4.34%
Fusarium oxysporum	2.4 D	noleen	and Disc	dises/it	iadi p	na annes Magastr	ellegiden Ritipelle	ા સામાનગાફરન આવેલુકો જાણ ક	noindua	3	4.349
F. chlamvdosporum	inogai aotobi	ioggi arroji otod the al	ophilic_f) sitte stati	h seath diaeadh	an-lis	03-85 W	dephy to	residue con for dermi	stevoir	3	4.349
F. verticillioides	in the i nlany i	icant role es ^a ; have	ay a signif ecd - resido	They pl lecentini	gi are inels.	nui 5256 nui 526	tingi. 'T ani being	tinophille i stich in hum	s of infec	3	4.349
namud aauso videdore F. solani		nos bus son		rob difw	,stake	('to asta	autrov	most botos	Method (ico coi)	2	2.899
Penicillium sp.			e esti ni bi	intestenti				screened i odier rela		distant.	

Table 1. Distribution of keratinophilic fungi in different types of soil.	INCIDENCE OF KERATI
TELE & STLENESS FREERE CAF EBUILE HER COME TO THE COME	

268

261

and or animal presence, which are of fundamental importance.

The result of the isolation are presented in Table L The data show that out of 110 samples only 69 yielded keratinophilic fungi. A total of 7 genera with 18 species were isolated. Chrysosporum indicum was the most frequently isolated species (13.04%) and agrees with findings of previous workers^{11,12}. Its high percentage of distribution indicate that it is adapted to the warmer condition of India. Microsporum gypseum was the next frequent isolate (11.59%). This species was also reported as the second most common dermatophyte from soils in Madras and Mumbai^{13,14}. M. gypseum is a common geophilic dermatophyte widely distributed in soil globally^{15,16}. It causes, ringworm of the scalp and glabrous skin in human beings. Microsporum fulvum occupied last position among dermatophytes. M. fulvum is geophilic fingi and rarely infects man and animals. It was also find out first by Singh et. al.17. Chrysosporium tropicum were recovered from 10.14% of the samples. It has been also reported by Jain et. al. 18. Regarding other dermatophytes, we encountered Trichophyton mentagrophytes (10.14%), Irubrum (10.14%), T.tonsurans (4.34%) and Ischoenleinii (2.89). Trichophyton mentagrophytes were repoted from school and public park environment in Juipur^{19,20}. T. mentagrophytes is distributed throught the world and it recovered from man and animals as an agent of Tinea pedis and Tinea unguium²¹. We also encountered the Epidermophyton floccosum from 4.34% soil samples.

Other than dermatophytes and related species, keratinophilic fungi belonging to 3 genera were recovered from soil samples. The most frequently observed species were: Fusarium oxysporum > F.chlamydosporum > Everticillioides> Aspergillus fumigatus> F.solani> Aniger> A.terreus> A.flavus> and Penicillium sp. The potential human pathogenic fungi isolated in the present mudy were A. fumigatus. Its spores are air-disperesed and may reach the upper and lower airways as well as the ear canals. Massive spore inhalation may cause acute allergic pulmonary disease²². Aspergillus flavus was the second dominant species in soil sample in the category of other fungi. This species has been cited as one of the fungi, which are present in atmosphere²³. The geneus Penicillium was also isolated (1.44%) from the soil samples. The data re coincident with those reported by several authors who mention the constant presence of Penicillium in mycoflora from different area in the world^{24,25}. Fusarium oxysporum md F.solani was also find out by Vidyasagar et al. from hospital dust and soils of public places from Gulbarga²⁶. Esolani was also encounter from soil sample of poultry

.....

farm in Tamilnadu²⁷. It appears from this study that a rich variety of keratinophilic fungal flora exists in Rajasthan which may be attributed to the climatic and environmental conditions such as the soil type, vegetation, fauna and human habitations.

Acknowledgement

The authors are thankful to the Head of the Botany Department, Univercity of Rajasthan, Jaipur for facilities and encouragement during the research work.

References

- Rippon J W, Clinical aspects of medically important conidial fungi. In: Cole GT, Kendrick EB, (eds.) *Biology of Conidial Fungi*. New York: Academic Press, 198 3-35.
- Mercantini R, Marsella R, Lambiase L and Belardi M 1986, Isolation of Keratinophilic fungi from floors in Rome (Italy) Kindergarten and secondary schools. *Mycopathologia* 94 109-115.
- 3. Rippon J W 1982, Medical Mycology. *The Pathogenic Fungi and the Pathogenic Actinomycetes*. Philadelphia: WB Saunders Company.
- 4. Mantovani A 1978, The role of animals in the epidemiology of the mycoses. *Mycopathologia* 65 61-66.
- 5. Filipello M V 1986, Keratinolytic and keratinophilic fungi of children's sandpits in the city of Turin. *Mycopathologia* **94** 163-172.
- 6. Onion A H S, Ilsopp D and Eggins H O W (eds.) Smith's *Introduction to Mycology*. London: Edward Arnold Publishers, 1981.
- 7. Wolf P L, Russel B and Shimoda A (eds.) 1975, Practical Clinical Microbiology and Mycology: Technique and Interpretation. New York: John Wiley and Sons.
- 8. Sharma R and Rajak R C 2003, Keratinophilic fungi: Nature's keratin degrading machines! Their isolation, identification, and ecological role. *Resonace* 28-40.
- 9. Connole M 1990, Review of animal mycoses in Australia. *Mycopathologia* 111 133-165.
- Filipello M V, Preve L and Tullio V 1996, Fungi responsible for skin mycoses in Turin (Italy). Mycoses 39 141-50.
- 11. Garg AK 1966, Isolation of dermatophytes and other related keratinophilic fungi from soil of India. *Sabouradia* 4 259-264.
- Deshmukh S K and Agrawal S C 1983, Prevalence of dermatophytes and other related keratinophilic fungi in soil of Madhya Pradesh (India). *Mykosen* 26(11) 574-577.
- 13. Deshmukh S K 1999, Keratinophilic fungi isolated

from soils of Mumbai, India. *Mycopathologia* **46** 115-116.

- Ramesh V M and Hilda A 1999, Incidence of keratinophilic fungi in the soil of primary schools and public parks of Madras city, India. *Mycopathologia* 143 139-145.
- Abdel-Fattah H M, Moubasher A H and Maghazy S M 1982, Keratinophilic fungi in Egyptian soils. *Mycopathologia* 79 49-53.
- 16. Ulfig K and Korez M 1983, Isolation of keratinophilic fungi from sewage sludge. *Sabouraudia* 21 247-250.
- 17. Singh I, Mishra A and Kushwaha R K S 2009, Dermatophytes, related keratinophilic and opportunistic fungi indoor dust of houses and hospital. *Indian J. Medical Microbiol.* 27(3) 242-246.
- Jain N, Bhaduria S, Sharma M and Kumar P 1999, Keratinophilic and other related fungi flora of Jaipur-II. J. Phytol. Res. 12(1-2) 105-106.
- 19. Sharma M and Willianson D 1984, Keratinophilic fungal flora of Jaipur district-I. *Biological Bulletein of India*, Bhagalpur. 6(3) 195-204.
- 20. Iyer S R, Sharma M, Willanson D and Joshi S 1989,

Studies on the occurance of keratinophilic fungi in soil of Jaipur I. Indian Phytopath. 42 199-201.

- Ajello L and Cheng S L Y 1967, The perfect state of Trichophyton mentagrophytes. Sabouraudia 5 230-234.
- 22. Frey D, Oldfield R J and Bridger R C 1979, Pathogenic Fungi. Wolfe Medical Publications.
- 23. Calvo M A, Guarro J, Suarez G and Ramirez C 1980, Airborne fungi in the air of Barcelona (Spain) III. The genus Aspergillus. Mycopathologia 71 41-43.
- 24. Sarquis M I M and Oliveira P C 1990, Diversity of microfungi in the sandy soil of Ipanema Beach, Rio de Janeiro, Brasil. J. Basic Microbiol. 36 51-58.
- 25. Migahed F 2003, Distribution of fungi in sandy soil of Egyptian Beaches. Pak J. Boil. Sci. 6(10) 860-66.
- 26. Vidyasagar G M Hosmani N and Shivkumar D 2005, Keratinophilic fungi isolated from hospital dust and soils of public places at Gulbarga, India. *Mycopathologia* 159 13-21.
- 27. Anbu P, Hilda A and Bose S 2004, Keratinophilic fungi of poultry farm and feather dumping soil in Tamil Nadu, India. *Mycopathologia* **158** 303-309.