A SURVEY OF NEMATODES ASSOCIATED WITH BRINJAL (EGGPLANT) IN GUNA DISTRICT OF MADHYA PRADESH

G. C. SAXENA, Y. P. SINGH and R. K. DESHMUKH Botany Department, Govt. P. G. College, Guna (M.P.), India.

A survey of plant parasitic nematodes associated with roots of Egg plant was organised in Guna district during 1987-88. It revealed the presence of 13 genera of plant parasitic nematodes and 3 genera of free living forms. The root-knot nematode, *Meloidogyne incognita* was found in 80 per cent of the samples collected. Members of *Hoplolaimidae* : *Helicotylenchus*, *Hoplolaimus* and *Pratylenchus* were recorded from the majority of the areas surveyed.

Keywords : Plant parasitic nematodes; Brinjal; Survey.

Nematodes are one of the limiting production vegetable factors in throughout the world (Reddy, 1979). nematode regarding Information populations and damage of crops in different areas of our country is meagre. In the present communication a survey was undertaken during 1987-88 to study the population density and distribution of nematodes associated with the Egg plant in the Guna district of Madhya Pradesh.

About 100 soil samples were collected from different locations in the Guna region. The sampling, for obtaining a composite sample, was made from different sub-samples taken at random within the area in a serpentine fashion. About one kg of soil from root zone and five g of root were collected in plastic bags. extraction and counting of For nematodes, 240 g soil samples were analysed by Cobb's washing and sieving technique, Baermann's funnel technique and method of direct observation of very small quantities of soil under the microscope. For endoparasites, roots washed free of soil, cut into small pieces, macerated in blender, then stained in cottonblue-lactophenol solution and examined under the microscope. The nematodes collected by these methods were stored in FA or FAA. Analysis of soil was also undertaken. The soil samples were categorised on colour basis into five broad types and results of the various tests conducted are presented in Table 1.

Soil type	% mois- ture	pH range	Conductivity Micromhos/cm	% Mechanical fraction			% organic occurrence
				Sand	Silt	Clay	-
Black	16.5	5.7-8.0	564	60	20	20	0.01
Grey	13.5	5.7-8.5	655	57	20	20	0.21
Yellow	13.1	5.7-8.0	625	50	20	20	0.15
Brown	13.5	57-77	510	50	30	20	0.16
Brick red	10.0	5772	510	62	20	13	0.09
	10.0	5.7-7.2	524	67	20	13	0.08

Т	abl	e	1.	Soi	I-A	nal	sis.
---	-----	---	----	-----	-----	-----	------

 Table 2. Population density of Nematode genera associated with Egg plant in Guna district.

Family	Nematodes	Population density	Per cent occurrence
Tylenchidae	Tetylenchus	42	10
and a state	Zygotylenchus	06	10
and the second of	Tylenchus	72	60
	Tylenchorhynchus	54	50
	Ditylenchus	13	20
Heteroderidae	Meloidogyne incognita Meloidogyne species	above 500	80
Hoplolaimidae	Helicotylenchus Hoplolaimus	27 09	60 40
	Pratylenchus	24	50
Criconematidae	Paratylenchus Hemicriconemoides	27 03	45 10
Aphelenchidae	Aphelenchus Aphelenchoides	09 12	10
Dorylaimida (Order)	Dorylaimus Trichodorus	21	60
	Mononchus	09	30 60
Rhabditidis	Rhabditis	15	80

About seventeen different nematode genera were found associated with the Egg plant in the Guna region Table 2 indicates that the most abundant phytoparasitic genera with very high population density occuring in this district is Meloidogyne incognita. The populations of Tylenchus, Tylenchorhynchus, Helicotylenchus, Pratylenchus, Paratylenchus and Trichodorus are recorded from the different areas but their populations are generally low. The other phytoparasitic genera, Tetylenchus, Zygotylenchus, Hoplolaimus, Aphelenchoides, Aphelenchus, Ditylenchus and Hemicriconemoides recorded in a limited area with poor populations. The frequent occurrence of some free living forms of nematodes like Dorylaimus, Mononchus and Rhabditis around the roots in the soil indicated that some biotic relationship exists which influences the variation in the populations of these forms in the different areas.

The authors are grateful to the Director M.P. Council of Science and Technology, Bhopal for the financial assistance and Dr. B. P. Saxena, Principal, Govt. P. G. College, Guna for providing laboratory facilities and encouragement during the course of this study.

Accepted March, 1989

References

Reddy P 1979 Indian Phytopath 32 534