IN VITRO SCREENING FOR ANTIBACTERIAL ACTIVITY OF SOME INDIAN PLANTS

A. D. CHOUGALE, MD. SAIFUL-ARFEEN* and M. V. PADUL*
Biochemistry Department, NACAS College, Pune University, Ahmednagar-414001, Maharashtra-414001, India
*Biotechnology Department, NACAS College, Pune University, Ahmednagar-414001, Maharashtra-414001, India.
*E-mail: manoharpadul@yahoo.co.in

Present study conducted to evaluate the antibacterial activity of crude ethanolic extracts of seven edible and medicinal plants against Bacillus subtilis. Among tested plants, Tinospora cordifolia (TC) and Syzygium aromaticum showed antibacterial activity. The MICs of these plants were found to be 12.5 μg and 25 μg disc⁻¹, respectively by disc diffusion method. While, MICs from broth dilution methods were found to be 1.5 mg ml⁻¹, and 2.5 mg ml⁻¹, respectively. The MIC values revealed TC has more antibacterial potential than S. aromaticum. Antibacterial activity of TC was further evaluated against different microbes like Staphylococcus aureus, Escherichia coli, Pseudomonas aeruginosa, Bacillus subtilis, Pseudomonas desmolyticum, Proteus vulgaris and yellow cells. Different crude solvent extracts of TC (Hexane, Dichloromethane, Acetone and Methanol) were screened for their antibacterial activity. In which acetone extract exhibited highest inhibitory activity for all tested microorganisms. The TLC of acetone extract of TC showed four different spots among which only 4th spot (Rf =0.14) from solvent front showed promising antibacterial activity.

Keywords: Antibacterial activity; Crude extracts; MIC; TLC.

Introduction
Different sources are in search by clinical microbiologists for new antimicrobial compounds from various kinds of microorganisms, animals, and plants while, finding healing powers in plants is an ancient idea, which attract scientists in the topic of antimicrobial plant extracts. Every year two to three antibiotics derived from the microorganism getting launched in the market. Such huge amount of the launching of antibiotics is due to getting resistance for the pathogen towards these antibiotics. One way to prevent antibiotic resistance of pathogenic species is by using new compounds that are not based on existing synthetic antimicrobial agents. The world health organization (WHO) estimated that around 80% of population of developing countries relies on traditional medicines, mostly plant drugs from their primary health care. Demand for using traditional plants is increasing both in developing and developed countries. These were due to growing reorganization of natural products, being non necrotic and having less side effects, easy availability and affordable prices. In addition traditional healers claim that some medicinal plants are more efficient to treat infectious diseases than synthetic antibiotics. Much work has been done on ethnomedicinal plants in India. Interest in a large number of traditional natural products has increased. It has been suggested that aqueous and ethanolic extracts from plants used in allopathic medicine are potential sources of antiviral, antitumoral and antimicrobial agents. The selection of crude plant extracts for screening programs has the potential of being more successful in initial steps than the screening of pure compounds isolated from natural products.

In the present study ethanolic extracts of seven edible and medicinal plants were screened for their antibacterial activity. The various solvent extracts of undertaken plant were tested for the antibacterial activity and TLC fractionation was done to detect the active antibacterial spot.

Material and Methods
Plant materials: Fresh plant materials of Syzygium aromaticum, Pism sativum, Amaranthus viridis, Cicer arientinum, Sesbania grandiflora, Tinospora cordifolia (TC) and Glycine max were collected from the Ahmednagar district, Maharashtra state, India. The plants collected were authenticated at Department of Botany, Shivaji University, Kolhapur, India.
Fig. 1. Antibacterial activity of different solvent extracts of *Tinospora cordifolia* at 5 mg concentration. Data representing three individual tests ± SE.

Table 1. Antibacterial activity of the some plants against *Bacillus subtilis*.

<table>
<thead>
<tr>
<th>Plant Name</th>
<th>Common name</th>
<th>Part used</th>
<th>Antibacterial activity</th>
</tr>
</thead>
<tbody>
<tr>
<td>Syzygium aromaticum</td>
<td>Clove</td>
<td>Fruit</td>
<td>+</td>
</tr>
<tr>
<td>Pisum sativum</td>
<td>Pea</td>
<td>Seed</td>
<td>-</td>
</tr>
<tr>
<td>Amaranthus viridis</td>
<td>Amaranthus</td>
<td>Seeds</td>
<td>-</td>
</tr>
<tr>
<td>Cicer arietinum</td>
<td>Gram</td>
<td>Seeds</td>
<td>-</td>
</tr>
<tr>
<td>Sesbania grandiflora</td>
<td>Shevri</td>
<td>Flower</td>
<td>-</td>
</tr>
<tr>
<td>Tinospora cordifolia</td>
<td>Guduchi</td>
<td>Stem</td>
<td>+</td>
</tr>
<tr>
<td>Glycine max</td>
<td>Soya bean</td>
<td>Fruit</td>
<td>-</td>
</tr>
</tbody>
</table>

Table 2. Minimum inhibition concentration of the positive antimicrobial activity.

<table>
<thead>
<tr>
<th>Sr. No.</th>
<th>Plant Name</th>
<th>MIC</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>BDM</td>
</tr>
<tr>
<td>1</td>
<td>Syzygium aromaticum</td>
<td>2.5 mg/ml</td>
</tr>
<tr>
<td>2</td>
<td>Tinospora cordifolia</td>
<td>1.25 mg/ml</td>
</tr>
</tbody>
</table>

MIC = minimum inhibitory concentration, BDM = broth dilution method, DDM = disc diffusion method, - = not determined.

Preparation of extract: Dried plant material (20 g) was macerated with 80% ethanol (200 ml) for 24 hours and then centrifuged. The supernatant was evaporated to a thick residue at 40°C. The residue was dissolved in desired amount of DMSO (dimethyl sulfoxide). Same procedure was used for the extraction of TC by different solvents (Hexane, Dichloro methane, Acetone) separately.

Microorganisms tested and antibacterial assay: The following strains of bacteria were used: *Escherichia coli* ATCC 25922, *Bacillus subtilis* ATCC 11778, *Pseudomonas aeruginosa* ATCC 27853, *Staphylococcus aureus* ATCC 25923, *Pseudomonas desmolyticum* NCIM 2112, *Proteus vulgaris* NCIM 2001 and yellow cells (clinical isolate). Antibacterial activity was screened by...
Results and Discussion

Several pathogenic bacteria like *S. aureus*, *B. subtilis* etc., are known to exhibit resistance against antibiotics. Plants are considered as potential sources of compounds with antibacterial activity. A variety of phytochemicals belonging to different chemical groups like alkaloids, flavonoids, tannins, coumarins, quinones and proteins were reported to exhibit antimicrobial activities.

In present study seven ethanolic extracts of different plants were screened for their antibacterial activity against *B. subtilis*. Out of which only two showed antibacterial activity i.e. *Syzygium aromaticum* and *Tinospora cordifolia* (Table 1). Both these plants were reported for many medicinal uses. The MIC values of this two active plant extracts was determined by two different methods viz. broth dilution method (BDM) and disc diffusion method (DDM) (Table 2). The MIC values were found to be less in DDM than in BDM. The MIC of *Syzygium aromaticum* by BDM was found 2.5 mg/ml whereas the MIC by DDM for same plant was 25 μg/disc. The MICs of TC was 1.25 mg/ml and 12.5 μg/disc, respectively by BDM and DDM. Obtained MIC values reveal more sensitivity of DDM over BDM. The MIC values from table 2 indicate that TC is having more antibacterial activity than *Syzygium aromaticum*. Present finding is in concomitance with Jeyachandran and Anand.

As the plant TC showed more potential, attempts were made to thoroughly investigate its antibacterial potential against seven pathogenic bacteria. The different solvent extracts (Hexane, Dichloromethane, Acetone and Methanol) were tested for their antibacterial activity. Amongst which acetone fraction showed maximum zone of inhibition against all tested microorganisms. TC has been reported to possess multiple activities and it has been documented for treatment of several ailments such as diabetes, as immunomodulatory, antioxidant and radioprotective agent. The plant extract has been reported to have hypolipidaemic action.

The more active acetone extract of TC was fractionated by TLC method, which gives four different spots. It was observed that out of four fractions (Rf values 0.14, 0.41, 0.83 and 0.89) only 4th fraction (Rf value 0.14) from solvent was found to have potent antibacterial potential while rest of three fractions were unable to inhibit the bacterial growth.

Acknowledgements

Authors are thankful to the institution for providing necessary facilities.

References

activity and phytochemical analysis of column
chromatographic fractions of stem bark extracts of
Ficus sycomorus L. (Moraceae). J. Plant Sci. 2(2)
209-215.
12. Hassan S W 2005, Antimicrobial screening,
phytochemical analysis and toxicological studies on
Danfodiyo University, Sokoto, Nigeria.
Screening for antimicrobial activity of some medicinal
plant species of traditional Chinese medicine. Czech.
J. Food Sci. 21 107-111.
Plaza D, Rodriguez C N, Rodriguez A G, Garcia A,
Pastran B, Jiménez I, Mejomi P, Tellez I and Franco-
Paredes C 2008, Antimicrobial Susceptibility of
Bacterial Strains Isolated from Recreational
Swimming Pools in Two Provinces of North-Central
de Leon. 39(1) 11-14.
of Antimicrobial Resistance. (Accessed 5 December
2005). Available on internet at: www.who.int/emc-
docs/EGlobal_Strat.pdf.
G E, McDougal L K, Carey R B and Talan D A 2006,
Methicillin-resistant S. aureus infections among
355(7) 666-674.
18. Gagnux S, Burgos M V, DeRiemer K, Enciso A,
Muñoz S, Hopewell P C, Small P M and Pym A S
2006, Impact of bacterial genetics on the transmission
of isoniazid-resistant Mycobacterium tuberculosis.
PLoS Pathog. 2(6) 603-610.
19. Zore G B, Winston U B, Surwase B S, Meshram N S,
Sangle V D, Kulkarni S S and Karuppayil S M 2006,
Chemoprophylaxis and bioactivities of Taverniera
cuneifolia (Roth) Arn.: A wild relative and possible
substitute of Glycyrrhiza glabra L. Phytomedicine
15 (4) 292-300.
20. Cowan M M 1999, Plant Products as Antimicrobial
Agents. Clinical Microbiology Reviews 12(4) 564-582.
149 59.
bacterial pathogens on the medicinal plant Tinospora
cordifolia (Wild.) Hook. F. and Thomson. Asian J.
Microbiol. Biotech. Env. Sc. 7(3) 555-557.
compounds from Tinospora cordifolia. J. Ethanopharma.
58 89-95.
24. Manjrekar P N, Jolly C I and Narayanan S 2000,
Comparative studies of the immunomodulatory
activity Tinospora cordifolia and Tinospora sinensis.
Fitoterapia 71 254-257.
Tinospora cordifolia roots extract in alloxan
diabetes rats. Phytotherapy Res. 15 213-221.
26. Goel H A, Prasad J, Singh S, Sagar R K, Agrawal P
K, Bala M, Sinha K and Dorga R 2004,
Radioprotective potential of Herbal Extract of
27. Prince S M, Padmanabhan M and Menon V P 2004,
Restoration of antioxidant defense by ethanolic of
Tinospora cordifolia root extract in alloxan induced
diabetic liver and kidney. Phytotherapy Res. 18 785-
787.