J. Phytol. Res. 7 (2): 139-142, 1994

HISTOCHEMICAL PROFILE OF STEM GALL OF INDIGOFERA ATROPURPUREA BUCH. HAM.INDUCED BY AN UNKNOWN MIDGE

KANIKA SHARMA* and U.KANT

Department of Botany, University of Rajasthan, Jaipur-302 004, Rajasthan, India.

*Dept. of Botany, Mohanlal Sukhadia University, Udaipur-313 001, Rajasthan, India.

Stem galls of *Indigofera atropurea* Buch. Ham. are induced by an unknown midge. A marked difference in the anatomy was observed between gall and normal tissues. Distribution of various metabolites and activities of enzymes like polyphenol oxidases, peroxidases and acid phosphatase in the infected tissue suggests a definite alteration in the metabolic activity of the host to the advantage of the insect.

Keywords : Enzyme activity, Histochemistry; Indigofera atropurpurea ; Metabolites.

Introduction

Stem galls of *Indigofera atropurea* Buch.Ham. are caused by an unknown midge of the order Diptera. Heavily infested plants were found in Nainital and Garhwal regions of Uttar Pradesh during the months of July to October. Galls on this plant are indehiscent swellings of axillary or terminal buds. The bulk of gall is made up of parenchyma cells. The larval cavity is lined by polygonal cells of nutritive zone. These cells have dense cytoplasm and prominent nuclei. Histochemical profile of the gall was studied to understand the cellular and subcellular changes which lead to the development of abnormal growth.

Material and Method

Normal stem and stem galls of *Indigofera atropurpurea* were collected from Nainital and adjoining areas. The following metabolites were localised histochemically. Proteins [Amido Black stain]¹, Lipids [Sudan III dye]², Starch [IKI reaction]³, Tanin [Lugol's iodine]⁴. Apart from these, activities of enzymes like Polyphenol oxidase⁵, Peroxidase⁶ and Acid Phosphatase⁷ were also localised. Their qualitative increase /decrease was assessed in terms of intensity of staining and the degree of distribution of the stain in the tissues.

Observations

Histochemical localisation of various metabolites and activity of enzymes in normal and gall tissues is shown in table 1. In normal stem tissues high concentration of protein was restricted to cortex, phloem and medullary ray regions. On the whole gall tissues showed a higher concentration of proteins as compared to normal tissues. Proteins were observed throughout the gall parenchyma. Abundance of starch granules was observed in gall parenchyma. The intensity of starch deposition was more in cell layers away from the nutritive zone. Gall tissues showed presence of lipids in the outer cortex regions and in cells of nutritive zone whereas a feeble reaction for lipids was observed in the tissues except in cork region. Tanin filled cells were observed away from the nutritive zone in gall tissues. Activity of enzymes polyphenol oxidase, peroxidase and acid phosphastase were significantly higher in nutritive zone as compared to the gall cortex.

Discussion

Stem galls of Indigofera atropurpurea develop as a result of the cecidogenic acitivity of the feeding larva of the midge. Accumulation of proteins in the gall tissues, maximum being in the nutritive zone, helps the cecidozoan in its growth and development. This increased concentration of protein can be correlated with increased peroxidase acitivity⁸. Increased protein synthesis in response to wounding has been reported⁹. Westphal¹⁰ and Kant et al.¹¹ also reported increased incidence of protein in gall tissues of some mite induced galls. Occurence of starch in the gall parenchyma suggests the utilisation of starch in the form of soluble saccharides diffusing through cortical cells. Similar results have been reported by several workers¹¹⁻¹³. Lipids in the nutritive zone sustains the feeding larva over a long period. A significant increase in lipids in gall tissues as compared to normal, especially in nutritive region has also been observed in several insect induced galls¹¹, 14-16. Absence of tannins in the nutritive zone stem gall of *Indigofera atropurpurea* could be due to higher peroxidase activity in this region. High activity of peroxidase suggests that the oxidation of phenolics was carried out peroxidatively¹⁷.

Predominant activity of acid phosphatase in gall tissues, maximum being in nutritive zone suggests a higher metabolic activity in cells of nutritive zone^{11,18}. Feeding activity leads to increased synthesis of enzymes like polyphenol oxidase, peroxidase and acid phosphatase. Increased activity of these enzymes in gall tissues especially the nutritive zone leads to higher auxin activity, increase in growth and metabolism and accelerated protein synthesis. Thus there is mobilisation and accumulation of metabolites in the gall tissues which are then utilised by the gall maker.

S.No.	Metabolites	Normal/gall	Regions localized	Intensity
1,	Protein	Normal	Cortex	++
			Phloem	+++
			Medullary ray & pith	+++
		Gall	Cortex	· · · · · · · · · · · · · · · · · · ·
			Nutritive zone	++++
2.	Starch	Normal	Cortex	+
		Sec. 1	Medullary ray	a late descente
			pith	++
		Gall	Cortex	++++
			Nutritive zone	++
3.	Lipids	Normal	Cork	+++
			Xylem	t m t Arrent
		Gall	Cortex	and contact
			Nutritive zone	+++
4.	Tanin	Normal	Cork	
			Xylem	++
		Gall	Cortex	++++
			Nutritive region	
5.	Acid Phosphatase	Normal	Cortex	++
			Phloem	++
			Medullary ray	++
			pith	+
		Gall	Cortex	+++
			Nutritive zone	++++
6.	Peroxidase	Normal	Cortex	+++
			Phloem	+++
			Medullary ray	++
			pith	+
		Gall	Cortex	+
			Nutritive zone	+++
1	Polyphenol oxidase Normal		Cortex	++
			Phloem	+++
			Medullary ray	++
			Pith	++ -
			Cork	+ 45 ···
		Gall	Cortex	+
			Nutritive zone	

Table 1. Histochemical localization of metabolites in normal and gall tissues of *Indigofera* atropurpurea stem.

Very low intensity+, Low intensity ++, High intensity +++, Very high intensity ++++.

References

- 1 Weine R J 1959, Arcia Mitgraven New York
- 2. Chiffelle T L and Putt F A 1951, Propylene and Stain Tech. 26 51
- 3. Johansen D A 1940, Plant microtechnique McGraw Hill Book Co. New York
- Haridas E T and Suresh Kumar N 1985, Some techniques in the study of insect-host plant interaction. In : Dynamics of Insect plant interaction Ed. Ananthkrishnan T N, Ento.Res.Inst.Loyola College Madras.
- 5. Sexton R and Hall JL 1978, Enzyme cytochemistry in Electron microscopy and cytochemistry of plant cells Elsevier-Amsterdam 63 148
- 6. Issac W E and Winch N H 1947, J. Pomol Horric Sci 27 23
- 7. Gomori G 1952, Microscopic histochemistry Principle and Practice Chicago: University of Chicago Press.

- Stahman M A and Demorest D M 1973, Fungal pathogenicity and plant response Academic press London 405.
- 9. Kahl G 1974, Bot. Rev. 40 263
- 10. Westphal E 1977, Marcellia 39 193
- 11. Kant U, Karnawat A and Ramani V 1992, Acta Botanica Indica 20 221
- 12. Bronner R 1977, Marcellia 401
- 13 Gopinathan K and Suresh G 1985, Proc. Indian Acad.Sci 95(2) 95
- 14. Gopinathan K 1987, Proc. Indian Acad Sci. 97 (3) 203
- 15. Raman A and Gopinathan K 1987, Beitr . Biol. Pflazen 62 59 .
- 16. Ramani V, Karnawat A and Kant U 1991, J. Tree Science 10 (1) 34
- 17. Sheen S J 1974, Bot. Gaz. 135 155
- 18. Bronner R and Meyer J 1972, Marcellia 37 77